When referencing this material, please cite the following publication:
In addition, please include the standard PhysioNet citation:
Background
The Global Electrical Heterogeneity (GEH) concept is based on the theory of Wilson’s electrical gradient vector, which characterizes the degree of heterogeneity of the total recovery time across the ventricles.
The larger the degree of heterogeneity of total recovery time across the ventricles, the larger the spatial ventricular gradient (SVG) magnitude. The SVG vector points towards the area where the total recovery time is shortest. SVG vector points the direction along which non-uniformities in excitation and repolarization are the greatest (i.e., it is perpendicular to the line of conduction block). Experimental and theoretical investigations demonstrated that the SVG is related to global heterogeneity of both action potential duration and morphology.
The concept underlying the SVG was extended to the spatial QRS-T angle, the three-dimensional angle between the QRS- and T-vectors and the sum absolute QRST integral (SAI QRST), a scalar analog of the SVG calculated as the absolute value of the area under the QRS complex and T-wave on the X, Y, and Z leads. The scalar value of SVG can also be calculated as a QT integral on Vector Magnitude signal (iVMQT), as an area under the Vector Magnitude signal curve from the QRS-onset to T-offset. Five GEH metrics (SVG magnitude, elevation, and azimuth, spatial QRS-T angle, and SAI QRST (or QT integral on Vector Magnitude signal, iVMQT) are complementary to each other; all together they characterize global electrophysiological properties of the heart. GEH is independently associated with sudden cardiac death. GEH can be measured on routinely used clinical 12-lead ECG, after its transformation into orthogonal (Frank) XYZ ECG. We recommend using Kors transformation.
Software Description and Usage
This page contains V.1 of the software. The working repository for this is hosted in the following github page: https://github.com/Tereshchenkolab/Global-Electrical-Heterogeneity.
One test file 90757.mat
is provided for GEH calculation testing, with a sampling rate 500 Hz and amplitude resolution 1 µV. A raw 12-lead ECG file 12LECG.mat
is provided to illustrate the Kors transformation from 12-lead to XYZ (Frank) ECG.
For a demonstration, load 12LECG.mat
and run Kors_git.m
, then load 90757.mat
and run GEH_analysis_git.m
Authors
Erick Andres Perez Alday, PhD, perezald@ohsu.edu Annabel Li-Pershing, BS, lipershi@ohsu.edu Muammar Kabir, PhD, muammar.kabir@gmail.com Larisa Tereshchenko, MD, PhD, tereshch@ohsu.edu
Name Last modified Size Description
Parent Directory - 12LECG.mat 30-Mar-2018 16:34 109K 90757.mat 30-Mar-2018 16:34 12K GEH_analysis_git.m 30-Mar-2018 16:34 23K GEH calculation.pdf 30-Mar-2018 16:34 267K Kors_git.m 30-Mar-2018 16:34 2.3K LICENSE 30-Mar-2018 16:34 1.0K
If you would like help understanding, using, or downloading content, please see our Frequently Asked Questions. If you have any comments, feedback, or particular questions regarding this page, please send them to the webmaster. Comments and issues can also be raised on PhysioNet's GitHub page. Updated Friday, 28-Oct-2016 22:58:42 CEST |
PhysioNet is supported by the National Institute of General Medical Sciences (NIGMS) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) under NIH grant number 2R01GM104987-09.
|