
WFDB Applications Guide

Tenth Edition
(revised and with corrections for WFDB 10.6.2)

8 March 2019

George B. Moody
Harvard-MIT Division of Health Sciences and Technology

Copyright c©1980 – 2014 George B. Moody

The most recent versions of the software described in this guide may be freely downloaded from PhysioNet
(http://www.physionet.org/). For further information, write to:

George B. Moody
Massachusetts Institute of Technology
77 Massachusetts Avenue, Room E25-505A
Cambridge, MA 02139
USA

An HTML version of this guide is available at http://www.physionet.org/physiotools/wag/.

Permission is granted to make and distribute verbatim copies of this guide provided that the copyright notice and
this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this guide under the conditions for verbatim
copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this guide into another language, under the above condi-
tions for modified versions.

Contents WFDB Applications Guide Contents

Contents

Introduction v

Frequently Asked Questions vii

Section 1: Applications
a2m, ad2m, ahaconvert, ahaecg2mit, m2a, md2a: converting between AHA DB and WFDB formats . . 1
ann2rr, rr2ann: convert annotation files to interval lists and vice versa 5
bxb: ANSI/AAMI-standard beat-by-beat annotation comparator . 8
calsig: calibrate signals of a WFDB record . 10
coherence: estimate coherence and cross-spectrum of two time series 12
dfa: detrended fluctuation analysis . 13
ecgeval: generate and run ECG analyzer evaluation script . 15
ecgpuwave: QRS detector and waveform limit locator . 16
edf2mit, mit2edf: convert between EDF and WFDB-compatible formats 18
edr: derive a respiration signal from an ECG . 20
epicmp: ANSI/AAMI-standard episode-by-episode annotation comparator 22
fft: fast Fourier transform . 25
fir: general-purpose FIR filter for WFDB records . 27
gqfuse: combine QRS annotation files . 29
gqrs, gqpost: QRS detector and post-processor . 30
hrfft, hrlomb, hrmem: calculate and plot heart rate power spectra . 32
hrstats: collect and summarize heart rate statistics from an annotation file 34
ihr: calculate instantaneous heart rate . 35
imageplt: plot a greyscale image . 37
log10: calculate common logarithms of two-column data . 38
lomb: estimate power spectrum using the Lomb periodogram method 39
lwcat: postprocess output of plt to make PostScript, EPS, PDF or PNG 40
memse: estimate power spectrum using maximum entropy (all poles) method 42
mfilt: general-purpose median filter for WFDB records . 44
mrgann: merge annotation files . 45
mxm: ANSI/AAMI-standard measurement-by-measurement annotation comparator 47
nguess: guess the times of missing normal beats in an annotation file . 49
nst: noise stress test for ECG analysis programs . 51
parsescp: parse SCP-ECG, optionally save in PhysioBank-compatible format 54
plot2d, plot3d: make 2-D or 3-D plots from text files of data, using gnuplot 58
plotstm: produce scatter plot of ST measurement errors on a PostScript device 60
plt: make 2-D plots . 61
pltf: make function plots . 67
pnnlist, pNNx: derive pNNx statistics from an annotation interval list or an annotation file 68
pnwlogin: provide direct access to PhysioNetWorks for WFDB applications 70
pschart: produce annotated ‘chart recordings’ on a PostScript device . 71
psfd: produce annotated ‘full-disclosure’ plots on a PostScript device 75

WFDB 10.6.2 8 March 2019 iii

Contents WFDB Applications Guide Contents

rdann: read a WFDB annotation file . 79
rdedfann: extract annotations from an EDF+ file . 81
rdsamp: read WFDB signal files . 82
rxr: ANSI/AAMI-standard run-by-run annotation comparator . 84
sampfreq: show sampling frequency for a record . 86
setwfdb, cshsetwfdb: set WFDB environment variables . 87
sigamp: measure signal amplitudes of a WFDB record . 89
sigavg: calculate averages of annotated waveforms . 90
signame: print names of signals of a WFDB record . 91
signum: print signal numbers of a WFDB record having specified names 92
skewedit: edit skew fields of header file(s) . 93
snip: copy an excerpt of a WFDB record . 94
sortann: rearrange annotations in canonical order . 95
sqrs, sqrs125: single-channel QRS detector . 97
stepdet: single-channel step change detector . 99
sumann: summarize the contents of a WFDB annotation file . 100
sumstats: derive aggregate statistics from bxb, rxr, etc., line-format output 101
tach: heart rate tachometer . 102
time2sec: convert WFDB standard time format into seconds . 104
wabp: arterial blood pressure (ABP) pulse detector . 105
wav2mit, mit2wav: convert between .wav and WFDB-compatible formats 106
wave: waveform analyzer, viewer, and editor . 108
wfdb-config: print WFDB library version and configuration info . 118
wfdb2mat: convert WFDB-compatible signal file to Matlab .mat file . 119
wfdbcat: copy WFDB files to standard output . 121
wfdbcollate: collate WFDB records into a multi-segment record . 122
wfdbdesc: read signal specifications . 124
wfdbmap: make a synoptic map of a WFDB record . 125
wfdbtime: convert time to sample number, elapsed, and absolute time 126
wfdbwhich: find a WFDB file and print its pathname . 127
wqrs: single-channel QRS detector based on length transform . 128
wrann: write a WFDB annotation file . 130
wrsamp: write WFDB signal files . 131
xform: sampling frequency, amplitude, and format conversion for WFDB records 133

Section 3: WFDB libraries
wfdb: Waveform Database library . 135
wfdbf: Waveform Database library wrappers for Fortran . 138

Section 5: WFDB file formats
annot: WFDB annotation file formats . 141
header: WFDB header file format . 143
signal: WFDB signal file formats . 150
wfdbcal: WFDB calibration file format . 152

Appendices
Installing the WFDB Software Package . 155
Evaluating ECG Analyzers . 157

iv 8 March 2019 WFDB 10.6.2

Introduction WFDB Applications Guide Introduction

Introduction

Most of this guide consists of UNIX man pages that describe the applications included in the WFDB (Waveform
Database) Software Package (and related software from PhysioToolkit). This introduction contains important infor-
mation about how to interpret the material in the main sections of the guide, and about common conventions for
using all of the WFDB applications that are not described in the main sections. The FAQ that follows this introduc-
tion contains additional information that will be particularly helpful if you are using MS-Windows (but it may be of
interest even if you are not).

Using this Guide
The organization follows the traditional arrangement of the UNIX Reference Manual: section 1 contains programs,
section 3 contains libraries, and section 5 contains file formats. In the UNIX Reference Manual, sections 2 and 4
are reserved for system calls and device interfaces respectively; these sections do not exist in this guide. Following
convention, a citation such as rdann(1) refers to the page titled rdann in section 1 of this guide.

A man ”page” may span more than one physical page, although most do not. Each man page in section 1 of this
guide documents one or more applications, as indicated in the NAME section at the top. The SYNOPSIS appears
next; it illustrates the form of the command line needed to run the application. In the synopsis, boldface indicates
text to be typed as is, and italics indicate replaceable arguments; brackets ([], which are not to be typed) surround
arguments that may be omitted, and ellipses (...) follow arguments that can be repeated. The DESCRIPTION
sections are intentionally terse; this is a reference manual and not a tutorial introduction to the software described
within. In those cases for which relevant tutorial material exists elsewhere, references appear in the SEE ALSO
sections of each man page. A unique feature of this guide is the SOURCE section at the end of each page, which
provides a URL where you may find the current version of the source(s) for each application.

On each page, the footer indicates the date when that page was last revised, and (in most cases) the version of
the WFDB Software Package that was current at that time. An old date and version number do not mean that the
page is out-of-date; rather they mean that the material described on that page remains current.

Under GNU/Linux, Mac OS X, or Unix, if the WFDB Software Package has been installed on your system, you
can also access the information contained in the main sections of this guide using man and related programs. For
example, to see the manual page for rdsamp, run the command

man rdsamp

(This also works under MS-Windows if you have installed the Cygwin package, which includes the man utility for
formatting and reading manual pages.) In some cases you may need to add /usr/local/man to your MANPATH
environment variable, in order to make these pages accessible to man.

An HTML version of this guide is also available (at http://www.physionet.org/physiotools/wag/).

Using WFDB Applications
If you have not used any of these programs before, you may need to set up your environment properly so that WFDB
applications can find their input files. See setwfdb(1) in this guide for information about doing this; a more detailed
discussion may be found in the first chapter of the WFDB Programmer’s Guide, in the section about the database
path. Most users will not need to do this, however.

WFDB 10.6.2 8 March 2019 v

Introduction WFDB Applications Guide Introduction

Certain types of command-line arguments are used by many of the applications described in this guide. These
include:

record

Where this appears, substitute the name of a WFDB record. A record name is not a file name! The first
part of the name of a .hea file is the name of the record to which the .hea file belongs; so the record name
corresponding to ‘100.hea’ is ‘100’. For example, MIT-BIH Arrhythmia Database record names are 3-digit
numbers, AHA Database record names are 4-digit numbers, and European ST-T Database record names begin
with lowercase ‘e’, followed by a 4-digit number. Record names may contain letters, digits, and underscores.
Case is significant in record names that contain letters, even in environments such as MS-Windows for which
case translation is normally performed by the operating system on file names; thus ‘e0104’ is the name of a
record found in the European ST-T Database, whereas ‘E0104’ is not. Once again: a record name is not a file
name; record names never include an extension (.hea, .dat, etc.).

Wherever a record name can be supplied to a WFDB application, you may include path information if nec-
essary. For example, if the WFDB path includes the current directory, and if the current directory includes
a subdirectory named ‘my records’, and that directory contains a record named ‘record 23’, you can supply
‘my records/record 23’ as a record argument. See the WFDB Programmer’s Guide for further details on
record names.

Each PhysioBank database directory includes a text file named RECORDS, which lists the record names for
all records in that directory.

annotator

Where this appears, substitute an annotator name. Annotator names are not file names! The suffix (ex-
tension) of the name of an annotation file is the annotator name for that file; so, for example, the annotator
name for ‘e0104.atr’ is ‘atr’. The special annotator name ‘atr’ is used to name the set of reference annotations
supplied by the database developers. Other annotation sets have annotator names that may contain letters,
digits, and underscores, as for record names.

Each PhysioBank database directory includes a text file named ANNOTATORS, which lists the annotator
names for all annotation files in that directory.

time

Where this appears, substitute a string in standard time format. Time arguments generally specify elapsed
times from the beginning of the record (for exceptions to this rule, see the section on the strtim function in
the WFDB Programmer’s Guide). Examples of standard time format:

2:14.875 2 minutes + 14.875 seconds
143 143 seconds (2 minutes + 23 seconds)
4:02:01 4 hours + 2 minutes + 1 second
4:2:1 same as above
s12345 12345 sample intervals
e time of the end of the record

signal

Where this appears, substitute a signal number or (in most cases) a signal name. Signal numbers are integers;
the first signal in each record is signal 0. In printed documentation for the databases, signals always appear
with signal 0 at the top, signal 1 beneath, etc. Signal names are the strings printed by signame(1).

signal-list

Where this (or ‘signal ...’) appears, you may specify more than one signal in any desired order; separate
the signal numbers or names using spaces. Unless otherwise noted, a signal may appear more than once,
or not at all, in a signal list. In most cases, the end of the signal list is unambiguous (since signal numbers
are never negative, and signal names rarely if ever begin with ’-’, an option argument beginning with ’-’ is a
reliable indicator). In unusual cases, you may need to arrange options so that the signal list is at the end of the
command, or so that it is followed by an argument that cannot be interpreted as a signal number.

vi 8 March 2019 WFDB 10.6.2

FAQ WFDB Applications Guide FAQ

Frequently Asked Questions
(and Frequently Exclaimed Exclamations)

I double-clicked on the program icon, and nothing happens!
I typed the program name in the ’Run...’ dialog, and nothing happens!
Don’t do this!

With few exceptions, PhysioToolkit applications run in text mode (i.e., they do not include a graphical user
interface). These programs are intended to be run within a terminal emulator using a command-line interface. In
most cases, if you attempt to run them by clicking on their icons or names, or by entering the program name in the
MS-Windows Run... dialog box, these programs will open a DOS box, print a usage summary, and exit, usually
much too fast for you to read anything.

By far the best way to use these programs under MS-Windows is to install a Unix-compatible terminal emulator
and shell in which to run them. The best of these is also free; if you have not already done so, download and install
the Cygwin software package from http://www.cygwin.com/. This package includes bash, the GNU Bourne Again
Shell and a terminal emulator in which to run it. After a standard installation of Cygwin, you can launch a terminal
emulator and bash by clicking on the Cygwin icon that will have been installed on your desktop.

If you do not wish to use Cygwin, it is possible to run these applications within a DOS box, but there are many
limitations of command.com that may prove frustrating. In particular, command.com supports a relatively small
space for environment variables that is not secure against buffer overruns, and has idiosyncratic filename globbing
behavior.

What does the message ”init: can’t open header for ...” mean?
This message can be produced by any application linked to the WFDB library, including rdsamp(1) and rdann(1).
In order to read data files, these applications need to find a header (.hea) file for the input record you specify. The
message indicates that the header file was not found in any of the expected places, or that it was unreadable. There
are three common reasons why this can happen:

• The record name supplied to the application is not correct. Record names are not file names (if this doesn’t
sound familiar yet, go back and read the introduction again). If you wish to read, for example, a signal file
named slp60.dat using rdsamp, you must specify the name of the record to which this file belongs (slp60)
after the -r option, and not the name of the file itself. Whatever follows ”init: can’t open header for ...” is what
the application thinks is the name of the record you wish to read. Also, be aware that case matters in record
names, even under operating systems that ignore case in file names. Thus ”SLP60” is not a valid record name;
”slp60” is.

• The header file is missing. If you download signal (.dat) or annotation (.atr, .qrs, etc.) files, be sure to
download the corresponding .hea files from the same locations.

• The list of locations to be searched does not include the location of the header file. WFDB applications
find their input files by searching a list of locations specified by the WFDB path (the environment variable
WFDB, or a default list of locations if WFDB has not been set). The WFDB path normally includes the
current directory, but this may not be true if the WFDB path has been modified; the current directory must
appear explicitly (either as a ”.” or as an empty component in the path) in order to be included in the list of
locations to be searched. For further information, see ”The Database Path and Other Environment Variables”
in the WFDB Programmer’s Guide.

WFDB 10.6.2 8 March 2019 vii

FAQ WFDB Applications Guide FAQ

How can I save the output of ... in a file?
How can one program read another’s output?
If you are running programs from a command prompt (by typing commands into a terminal emulator window or an
MS-DOS box), these things can be done easily.

If you have ever used GNU/Linux, Unix, or MS-DOS, you may have captured the output of a program by
redirecting it to a file, like this:

foo >bar

The > operator redirects foo’s standard output (which would normally appear on-screen) into a file named bar.
If bar exists already, its contents are replaced. If you wish to append foo’s output to whatever is already contained
in bar, use a command such as this instead:

foo >>bar

There is an analogous operator that arranges for a program’s standard input (which would normally be read from
whatever you type on the keyboard) to be read from a file instead:

baz <bar

Here, the < operator arranges for baz to read its input from a file named bar. If bar was created by foo, then
this command allows baz to read foo’s output.

You can combine input and output redirection in a single command using the pipe (|) operator:

foo | baz

This command runs foo and sends its standard output directly to baz, without requiring an intermediate file.
True multitasking operating systems such as Unix and GNU/Linux allow both programs to run (apparently) simul-
taneously; under MS-DOS or MS-Windows, the first program runs to completion before the second one begins
execution.

You can use these techniques whenever you run programs from a command prompt, whether those programs are
among those available here or obtained from some other source. You can use the same techniques with programs
you write yourself; the only requirement is that your programs must read from the standard input and write to the
standard output (i.e., they must not attempt to bypass the standard input/output mechanism by reading directly from
the keyboard or writing directly to the screen).

These operators (>, >>, <, and |) are supported by all shells (command interpreters) under Unix, GNU/Linux,
and MS-DOS (including those that run within MS-DOS boxes or other types of terminal emulators under MS-
Windows). For further information, please refer to the documentation for your shell or command interpreter.

Where else can I find answers to my questions about this software?
If you haven’t read the introduction to this guide yet, do so now. It answers many frequently asked questions
by describing the common behavior of many of the WFDB applications. It also describes the typographic and
organizational conventions used in the remainder of this guide.

Many more questions are asked and answered in the PhysioNet FAQ (http://www.physionet.org/faq.shtml).

viii 8 March 2019 WFDB 10.6.2

A2M(1) WFDB Applications Guide A2M(1)

NAME
a2m, ad2m, ahaconvert, ahaecg2mit, m2a, md2a − converting between AHA DB and WFDB formats

SYNOPSIS
To read from an AHA DB DVD:

ahaecg2mit [-s] ahafile.* ...
To read from an AHA DB CD:

ahaconvert ahafile.cmp ...
To read from an AHA DB floppy disk or 9-track tape:

a2m -i ahafile -r record -a annotator [options ...]
ad2m -i ahafile -r record [options ...]

To convert a WFDB record to AHA tape format:
m2a -r record -a WFDB-annotator AHA-annotator [options ...]
md2a -o ahafile -r record [options ...]

DESCRIPTION
The AHA Database for Evaluation of Ventricular Arrhythmia Detectors (AHA DB) has been distributed
since 1983 by ECRI (http://www.ecri.org), in at least four formats:

single-file (.txt) format
Developed by ECRI for distributions of the AHA DB on DVDs (ca. 2012) as a successor to the
earlier .ecg format (below); this format can be read by ahaecg2mit.

single-file (.ecg) format
Developed by ECRI for distributions of the AHA DB on DVDs (ca. 2008); this format can be read
by ahaecg2mit.

compressed (.cmp and .ano) format
Previously developed by ECRI for distributions of the AHA DB on floppy disks (ca. 1990) and
CDs (ca. 1995); this format can be read by ahaconvert (using a2m and ad2m).

tape format
Originally specified by the creators of the AHA DB at the Biomedical Computing Laboratory
(BCL) at Washington University in St. Louis. This format was also used for tape distributions of
the MIT-BIH Arrhythmia Database from 1980-1989; it can be read by a2m and ad2m, and written
by m2a and md2a.

The AHA DB consists of a development set of 80 records (which were created by the BCL between 1976
and 1983 and have been distributed by ECRI since then) and a test set of 75 records (also created by the
BCL between 1976 and 1983, but not distributed until about 20 years later). Each record contains two
simultaneous ECG signals that have been digitized for three hours continuously, and beat annotations for
the final 30 minutes of the signals in each record. The records have been distributed in two versions: a long
version (records named n0nn and n1nn) containing the full three hours of signals, and a short version
(records named n2nn and n3nn) containing only the final 35 minutes of signals (including all of the anno-
tated beats).

ECRI currently supplies the AHA DB only on DVDs, so the tape and compressed formats are primarily of
historical interest. The programs described below convert these formats into WFDB (also known as Phys-
ioBank or MIT) format. Long version input files can be converted in their entirety, or these programs can
create short version records from either long or short version inputs. The last two programs below convert
WFDB records to AHA tape format (conversion to AHA DB DVD and CD/floppy disk distribution formats
is not supported). All of these programs print a brief usage summary if invoked with no command-line
arguments, or with a -h option.

Note that records in WFDB format can be excerpted and reformatted in more generally useful ways using
snip(1) or xform(1).

WFDB 10.5.14 2 August 2012 1

A2M(1) WFDB Applications Guide A2M(1)

DVD FORMAT
ahaecg2mit

Use ahaecg2mit to convert .txt or .ecg files from an AHA DB DVD into WFDB-compatible records. One
or more input filenames may be supplied as command-line arguments; each specified input file is converted
into a WFDB record, including a .hea (header) file, a .dat (signal) file, and a .atr (reference annotation) file.
If the first command-line argument is -s, then ahaecg2mit produces short-form records with the correct
(n2nn or n3nn) record names.

If the .txt or .ecg files are not in the current directory, giv e their full pathnames. The output files are always
written to the current directory, so be sure that the current directory is writeable (it should not be the DVD)
and that has sufficient free space (roughly 8 Mb per long version record, or 1.6 MB per short version
record).

OLDER FORMATS
ahaconvert

Use ahaconvert to convert one or more records from an AHA DB CD-ROM into WFDB format. Run aha-
convert without any command-line arguments for instructions, or see the examples below. Note: ahacon-
vert is a shell script; to use it successfully, you will need to have a shell (standard with all versions of
Unix, and included in the free Cygwin package for MS-Windows) as well as ad2m and a2m, which per-
form the actual work of the conversion.

a2m
Use a2m to convert AHA-format annotation files from tapes, floppy disks, or CDs into WFDB format.
Options for a2m include:

-s time Shift annotations forward by the specified time (default: no shift for type 0 input files, 5 minutes
for type 1, 2 hours and 30 minutes for type 2; for type 3, the default is 5 minutes if record is of the
form n2nn or n3nn, or 2 hours and 30 minutes if record is of the form n0nn or n1nn).

-t type Convert an input file of the specified type (0: a file produced by a WFDB application using putann
and WFDB_AHA_WRITE mode; 1: an AHA DB ‘short format’ tape file; 2: an AHA DB ‘long
format’ tape file; 3: an AHA DB compressed (.ano) CD-ROM or floppy disk file). Input files of
types 1, 2, and 3 are assumed to contain annotation times in milliseconds, which are converted to
sampling intervals based on an assumed sampling frequency of 250 Hz. Default: type 3 is
assumed if ahafile ends with .ANO or .ano; type 0 is assumed otherwise.

ad2m
Use ad2m to convert AHA-format signal files from tapes, floppy disks, or CDs into WFDB format.
Options for ad2m include:

-c Convert an AHA DB compressed (.cmp) floppy disk file (this is the default if ahafile ends with
.CMP or .cmp, otherwise ad2m assumes that the input is a file in AHA DB tape format).

-f time Begin converting at the specified time relative to the beginning of the input file (default: 0, i.e., at
the beginning of the input file)

-t time Stop converting at the specified time relative to the beginning of the input file (default: 35 minutes
after the starting time if record is of the form n2nn or n3nn, 3 hours if record is of the form n0nn

or n1nn, or the end of the input file, whichever comes first).

m2a
Use m2a to convert WFDB-format annotation files into AHA tape format. Options for m2a include:

-s time Shift annotation times backward by the specified time, and convert them from sample intervals to
milliseconds.

2 2 August 2012 WFDB 10.5.14

A2M(1) WFDB Applications Guide A2M(1)

md2a
Use md2a to convert WFDB-format signal files into AHA tape format. Options for md2a include:

-n new-record

Create a new header file for the AHA-format output signal file, so that it may be read as record
new-record.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

EXAMPLES
AHA Database DVD

If the DVD is accessible as /media/dvd/, either
ahaecg2mit -s /media/dvd/*.txt

or (for DVDs written in the older format):
ahaecg2mit -s /media/dvd/*.ecg

makes a complete set of short-version records in the current directory. (Omit the -s to make a set of long-
version records instead.) Under Windows, within a Cygwin window, the DVD is accessible as /cygdrive/d/
(or /cygdrive/e/, etc., depending on the drive letter that Windows has assigned), so the same task can be
done under Windows by

ahaecg2mit -s /cygdrive/d/*.txt

AHA Database CD
AHA DB CDs contain both long and short versions of each record. In most cases, you will want to convert
only one version of each record. To convert the short-version records only, if the contents of the CD-ROM
are available at /mnt/cdrom, type:

ahaconvert /mnt/cdrom/?[23]??.cmp
(The pattern ’?[23]??’ matches the record names of the short-version records.)

To convert the long-version records only, type:
ahaconvert /mnt/cdrom/?[01]??.cmp

AHA DB floppy disk
To make a version of AHA DB record 1201 in WFDB format, given the distribution floppy disk, copy the
files 1201.ano and 1201.cmp to the current directory, then type:

ad2m -i 1201.cmp -r 1201 -c
a2m -i 1201.ano -r 1201 -a atr -t 3

These commands produce files 1201.dat (the signal file), 1201.hea (the header file), and 1201.atr (the ref-
erence annotation file), all in the current directory. Run ad2m first, so that the new header file is available
for the use of a2m. (In this example, note that the options ’-r 1201’, ’-c’, and ’-t 3’ are redundant unless
you have renamed the input files, since ad2m and a2m recognize the record name and file types from the
suffixes otherwise.)

AHA DB short version tape
To obtain the same files given a ‘short version’ 9-track distribution tape, copy the second and third files
from the tape into files 1201.tap and 1201.ann in the current directory, then type:

ad2m -i 1201.tap -r 1201
a2m -i 1201.ann -r 1201 -a atr -t 1

The names for the files copied from the tape are arbitrary, but do not use names of files to be generated by
ad2m or a2m (see the previous example). Note that the first and fourth files on the distribution tape con-
tain an ‘id’ block, which can be read by readid (a program included in the convert directory of the WFDB
Software Package) to verify the record name. Distribution tapes that contain more than one record contain
additional sets of four files, always in the same order within each set.

WFDB 10.5.14 2 August 2012 3

A2M(1) WFDB Applications Guide A2M(1)

AHA DB long version tape
To make a version of the three-hour AHA DB record 1001 in WFDB format, given the ‘long version’ distri-
bution tape, copy the second and third files from the tape into files 1001.tap and 1001.ann in the current
directory, then type:

ad2m -i 1001.tap -r 1001 -t 3:0:0
a2m -i 1001.ann -r 1001 -a atr -t 2

The -t 3:0:0 option is necessary to prevent ad2m from truncating the signal file after the first 35 minutes.

Converting AHA DB long version tapes to short version records
To make a version of AHA DB record 1201 in WFDB format, given a ‘long version’ 9-track distribution
tape containing the corresponding three-hour record 1001, copy the second and third files from the tape into
files 1001.tap and 1001.ann in the current directory, then type:

ad2m -i 1001.tap -r 1201 -f 2:25:0
a2m -i 1001.ann -r 1201 -a atr -t 1

In this case, the -f option instructs ad2m to skip the first two hours and 25 minutes of the ‘long-version’
AHA signal file, and to reformat the remainder (equivalent to the 35-minute ‘short-version’ record). The -t
1 option is used with a2m ev en though its input file comes from a ‘long-version’ tape, because the annota-
tion times must be shifted only by the amount necessary for a ‘short-version’ tape in this case.

Sharing signal files for long version and short version AHA DB records
To keep both versions (1001 and 1201) on-line, make the long version first (see above), then type:

a2m -i 1001.ann -r 1201 -a atr -t 1
to make a short version reference annotation file. Continue (under UNIX) by:

cp 1001.hea 1201.hea
or (under MS-DOS) by:

copy 1001.hea 1201.hea
and edit 1201.hea, replacing ‘1001’ in the first line (only!) with ‘1201’, and replacing ‘212’ in the second
and third lines by ‘212+6525000’ (see the description of the ‘byte offset’ field in header(5)). Although
each version needs its own header and reference annotation files, the long-version signal file can be shared
with the short version, allowing a substantial savings in storage requirements. Note that WFDB application
programs that read the ‘short version’ record 1201 signal file may report signal checksum errors at the end
of the record, unless you also recalculate the signal checksums (easily done using snip(1) to copy the
record; delete the copy once the checksums have been obtained).

AV AILABILITY
These programs are provided in the convert directory of the WFDB Software Package. Run make in that
directory to compile and install them if they hav e not been installed already.

SEE ALSO
snip(1), xform(1), wfdb(3), header(5)

AUTHOR
George B. Moody (george@mit.edu)

SOURCES
http://www.physionet.org/physiotools/wfdb/convert/a2m.c
http://www.physionet.org/physiotools/wfdb/convert/ad2m.c
http://www.physionet.org/physiotools/wfdb/convert/ahaconvert
http://www.physionet.org/physiotools/wfdb/convert/ahaecg2mit.c
http://www.physionet.org/physiotools/wfdb/convert/m2a.c
http://www.physionet.org/physiotools/wfdb/convert/md2a.c

4 2 August 2012 WFDB 10.5.14

ANN2RR(1) WFDB Applications Guide ANN2RR(1)

NAME
ann2rr, rr2ann − convert annotation files to interval lists and vice versa

SYNOPSIS
ann2rr -r record -a annotator [options ...]
rr2ann -r record -a annotator [options ...]

DESCRIPTION
These programs are typically used to obtain RR interval series from ECG annotation files, or to create an
annotation file from such a series, but they hav e a wider range of uses.

ann2rr
Use ann2rr to extract a list of intervals, in text format, from an annotation file. By default, the intervals are
listed in units of sample intervals (use sampfreq(1) to determine the sampling frequency of the input record
if necessary). Options for ann2rr include:

-A Print all intervals between annotations. By default, ann2rr prints only RR intervals (those
between QRS (beat) annotations). This option overrides the -c and -p options.

-c Print intervals between consecutive valid annotations only. (See discussion below.)

-f time Begin at the specified time. By default, ann2rr starts at the beginning of the record.

-h Print a usage summary.

-i format

Print intervals in the specified format. By default, intervals are printed in units of sample intervals.
Other formats include s (seconds), m (minutes), h (hours), and t (time interval in hh:mm:ss for-
mat). Formats s, m, and h may be followed by an integer between 0 and 15 inclusive, specifying
the number of decimal places (default: 3). For example, use the option -is8 to obtain intervals in
seconds with 8 decimal places.

-p type [type ...]
Print intervals ended by annotations of the specified types only. The type arguments should be
annotation mnemonics (e.g., N), as normally printed by rdann(1) in the third column. More than
one -p option may be used in a single command, and each -p option may have more than one type

argument following it. If type begins with ‘‘-’’, however, it must immediately follow -p (standard
annotation mnemonics do not begin with ‘‘-’’, but modification labels in an annotation file may
define such mnemonics).

-P type [type ...]
Print intervals begun by annotations of the specified types only.

-t time Stop at the specified time.

-v format

Print final times (the times of occurrence of the annotations that end each interval). This option
accepts all of the formats defined for -i, as well as T (to print the date and time in [hh:mm:ss
dd/mm/yyyy] if the starting time and date have been recorded in the header file for record). If this
option is chosen, the times appear at the end of each line of output.

-V format

Print initial times (the times of occurrence of the annotations that begin each interval). Any of the
formats usable for the -v option may be used with -V. If this option is chosen, the times appear at
the beginning of each line of output.

-w Print final annotations (the types (N, V, etc., as for -p above) of the annotations that end each
interval), immediately following the intervals in each line of output.

-W Print initial annotations (the types of the annotations that begin each interval), immediately before
the interval in each line of output.

The -c option, used without the -p option, causes ann2rr to filter out intervals between beats that have

WFDB 10.4.24 28 October 2009 5

ANN2RR(1) WFDB Applications Guide ANN2RR(1)

intervening non-beat annotations, such as rhythm or signal quality change annotations. Used with the -P
and -p options, the -c option causes ann2rr to reject intervals between annotations of the type(s) specified
by -p if there are annotations of any other types intervening; thus, for example, ‘‘-c -P N -p N’’ yields only
intervals between consecutive normal beats, and intervals between pairs of normal beats surrounding an
ectopic beat are discarded from the output. As another example, ‘‘-c -P N -p V’’ yields premature ventricu-
lar coupling intervals only (a coupling interval is the interval between a normal beat and an immediately
following premature ventricular contraction).

The default output contains a single column of intervals only; by using the -v, -V, -w, and -W options, up
to five columns, separated by tabs, may be output. The order of the columns is fixed (initial times, initial
annotations, intervals, final annotations, final times).

rr2ann
Use rr2ann to create an annotation file from the standard input, which should usually be a list of intervals
in the format produced by ann2rr. (For exceptions, see -T, -w, and -x below.) The first token on each line
is taken as an interval, and (if the -w option is present) the second token is taken as an annotation
mnemonic; anything else on the same line is ignored, as are empty lines, spaces and tabs at the beginning of
a line, non-numeric tokens and anything following them on the same line, negative intervals, and zero inter-
vals. The output consists of a binary annotation file (record.annotator), and (if it does not exist already) a
text header file (record.hea). Options for rr2ann include:

-F frequency

Assume the specified sampling frequency. This option has no effect unless it is necessary for
rr2ann to create a header file; in this case, a sampling frequency of 250 Hz is assumed if the -F
option is omitted.

-h Print a usage summary.

-T Interpret the input as times of occurrence, rather than as intervals.

-w Set each annotation type from the mnemonic (N, V, etc.) in the second column of the input (in the
format produced by ann2rr using its -w option).

-x n Multiply input by n to obtain intervals (or, if -T is also used, times of occurrence) in units of sam-
ple intervals). Default: n = 1.

Note that wrann(1) also provides a way to generate an annotation file from text. Unlike that of rr2ann,
wrann’s input format permits specifying annotation subtypes and other fields.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

FILES
record.hea header file

record.annotator annotation file

AV AILABILITY
These programs are provided in the app directory of the WFDB Software Package. Run make in that
directory to compile and install them if they hav e not been installed already.

The PhysioNet ATM (http://physionet.org/cgi-bin/ATM) provides web access to ann2rr (select Show RR
intervals as text from the Toolbox).

SEE ALSO
rdann(1), sampfreq(1), setwfdb(1), wrann(1)

AUTHOR
George B. Moody (george@mit.edu)

6 28 October 2009 WFDB 10.4.24

ANN2RR(1) WFDB Applications Guide ANN2RR(1)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/ann2rr.c
http://www.physionet.org/physiotools/wfdb/app/rr2ann.c

WFDB 10.4.24 28 October 2009 7

BXB(1) WFDB Applications Guide BXB(1)

NAME
bxb − ANSI/AAMI-standard beat-by-beat annotation comparator

SYNOPSIS
bxb -r record -a reference-annotator test-annotator [options ...]

DESCRIPTION
Using options -C, -L, or -S, bxb implements the beat-by-beat comparison algorithms described in
ANSI/AAMI EC38:1998, the American National Standard for Ambulatory ECGs, and in ANSI/AAMI
EC57:1998, the American National Standard for Testing and Reporting Performance Results of Cardiac

Rhythm and ST Segment Measurement Algorithms. bxb is the reference implementation of these algo-
rithms, and must be used to obtain the beat-by-beat performance statistics cited in EC38 and EC57 in order
to be in compliance with these standards (see EC38, section 5.2.14, and EC57, section 4.2). The -C, -L,
and -S options also gather statistics on RR interval errors, which were considered for inclusion in EC38, but
were eventually dropped from it.

Input to this program consists of two annotation files associated with the same record. One of these is des-
ignated the reference annotation file, the other the test annotation file (called the ‘algorithm’ annotation file
in EC38 and in EC57).

Options include:

-c file Append condensed reports (EC57 Table A.2.1 format) to file.

-C file As for -c, but report RMS RR interval error and SVEB statistics also.

-f time Begin the comparison at the specified time (default: 5 minutes after the beginning of the record).

-h Print a usage summary.

-l file1 file2

Append line-format reports (EC57 Tables A.2 and A.3 format) to file1 and file2 respectively (see
below).

-L file1 file2

As for -l, but report RMS RR interval error and SVEB statistics also.

-o Generate an output annotation file (see below).

-O Generate an expanded output annotation file (see below).

-s file Append standard reports (EC38, section 5.2.14, and EC57, Table 3 format) to file.

-S file As for -s, but report RMS RR interval error and SVEB statistics also.

-t time Stop the comparison at the specified time (default: the end of the record if it is defined, the end of
the reference annotation file otherwise; if time is 0, the comparison ends when the end of either
annotation file is reached).

-v Verbose mode (list all beat label discrepancies; see below).

-w time Set the match window (default: 0.15 seconds; see below).

The statistics gathered by bxb are based on tallies of ‘matching’ annotations in the reference and test anno-
tation files. Matching annotations need not have exactly equal annotation times; the match window speci-
fies the maximum absolute difference in annotation times that is permitted for matching annotations. bxb
measures the total shutdown time in the test annotation file as the sum of all intervals that begin with a
‘shutdown’ annotation and that end with a ‘resume’ annotation. (If a period of shutdown does not end
before the end of the record, the creator of the annotation file should nevertheless write a ‘resume’ annota-
tion at the end of the record, in order to permit correct shutdown accounting.) This program follows the
convention for ‘shutdown’ and ‘resume’ annotations adopted for reference annotation files of the European
ST-T database, a convention compatible with that established for the MIT-BIH Arrhythmia Database: ‘shut-
down’ annotations are NOISE annotations with bits 4 and 5 (i.e., the ‘16’ bit and the ‘32’ bit) of the sub-
type field both set; ‘resume’ annotations are NOISE annotations with any other subtype. The convention
used in AHA Database reference files, in which unreadable intervals are marked by only one ‘shutdown’

8 24 November 2002 WFDB 10.3.0

BXB(1) WFDB Applications Guide BXB(1)

annotation placed near the middle of the interval, is also acceptable; in this case, shutdown is assumed to
begin 150 ms after the previous annotation, and it is assumed to end 150 ms before the following annota-
tion.

At most one of -c, -C, -l, -L, -O, -s, and -S can be given as an option. If ‘-’ is giv en as a file argument,
reports are written on the standard output. If no options are specified, bxb writes standard reports on the
standard output (equivalent to using the option -s -). The output generated by selecting -l or -L includes
column headings only if a file other than ‘-’ is specified, and only if the specified file does not already exist.
In this way, bxb can be used repeatedly to build up a line-format table for multiple records, for further pro-
cessing by sumstats(1).

The -o option produces an output annotation file with annotator name bxb. The output annotation file con-
tains exact copies of all of the test annotator’s beat labels that match those of the reference annotator, as
well as NOTE annotations that describe all mismatches. Mismatched annotation types are mapped into the
AAMI ‘test label’ mnemonics (N, V, F, Q, O, and X; if the -C, -L, or -S option is also specified, the
mnemonics also include S). The ‘aux’ field of each NOTE annotation indicates the element of the confu-
sion matrix in which the mismatch is tallied (e.g., Nv represents an eventcalled a normal beat by the refer-
ence annotator and a ventricular ectopic beat by the test annotator). NOTE annotations that correspond to
beats missed by the test annotator are placed at the sample indicated by the reference annotation; all others
are placed at that indicated by the test annotation.

The -O option produces a similar output annotation file, in this case containing not only beat labels but all
others as well. No summary report is produced if -O is specified. NOTE annotations produced using -O
contain unmapped annotation mnemonics from the input annotation files. This option, if used together with
-f 0 -w 0, identifies all discrepancies between a pair of annotation files. It can be especially useful for
developing reference annotation files for new records.

The -v option specifies that each beat label mismatch is described on the standard output in a format similar
to:

N(120188)/V(120191)
where the letters indicate the AAMI mnemonics corresponding to the reference and test annotators’ beat
labels, and the numbers indicate the time fields (sample numbers) of the reference and test annotations
respectively. Note that O and X mnemonics are generated by bxb as placeholders for missing beat labels;
you will not find them in the input annotation files.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

DIAGNOSTICS
non-standard comparison selected

The -f, -O, -t, and -w options modify the comparison algorithm used by bxb in ways not permitted
by EC38 or EC57. These options are provided for the use of developers, who may find them use-
ful for obtaining a more detailed understanding of algorithm errors.

SEE ALSO
ecgeval(1), epicmp(1), mxm(1), rxr(1), setwfdb(1), sumstats(1)
Evaluating ECG Analyzers (in the WFDB Applications Guide)
American National Standard ANSI/AAMI EC38:1998, Ambulatory Electrocardiographs

American National Standard ANSI/AAMI EC57:1998, Testing and Reporting Performance Results of Car-

diac Rhythm and ST Segment Measurement Algorithms

The last two publications are available from AAMI, 1110 N Glebe Road, Suite 220, Arlington, VA 22201
USA (http://www.aami.org/).

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/bxb.c

WFDB 10.3.0 24 November 2002 9

CALSIG(1) WFDB Applications Guide CALSIG(1)

NAME
calsig − calibrate signals of a WFDB record

SYNOPSIS
calsig -r record [options ...]

DESCRIPTION
calsig (formerly known as calibrate) rewrites the header file for a WFDB record, setting the gain and base-
line fields based on measurements it makes, and setting the units fields based on input from the user or from
a calibration file. Normally, calsig is used by specifying a time interval for the measurements; best results
will be achieved if the specified interval is restricted to one or more square-wav e calibration pulses in each
signal to be calibrated, although sine-wav e pulses may be usable if the sampling frequency and/or ADC res-
olution is high enough.

The program constructs a smoothed amplitude histogram for each signal and identifies its two principal
modes. Initially, each bin of the histogram counts the number of samples in the analysis interval for which
the amplitude has a specified value. The histogram is smoothed by applying a low-pass filter that replaces
the contents of each bin by a weighted sum of fifteen bins centered on the bin of interest. The two principal
modes in the smoothed histogram must be separated by at least one bin with a count that is less than one-
eighth the count of the larger mode. If this criterion is not satisfied for a given signal, calsig warns the user
and does not adjust the gain or baseline for the affected signal.

If a signal list is specified using the -s option (see below), only the specified signals are calibrated, and the
gain, baseline, and units fields for any other signals are left unchanged. Thus, if calibration pulses are not
simultaneously available in all signals to be calibrated, calsig may be run repeatedly with different time
intervals and signal lists.

Options include:

-c file Obtain calibration pulse specifications from the specified file (see wfdbcal(5); default: obtain this
information from the file specified by the environment variable WFDBCAL, or interactively).

-f time Begin at the specified time in record (default: the beginning of record).

-h Print a usage summary.

-q Instead of using the standard method for calibration, get a ‘quick-and-dirty’ estimate by taking the
signal amplitudes at the starting and ending times (as specified by -f and -t) as representative of the
low- and high-amplitude phases of the calibration pulse. Use this option only if the standard
method fails; the standard method is more accurate.

-Q Use an alternate ‘quick-and-dirty’ estimate based on the range of signal amplitudes over the inter-
val specified by -f and -t. This method may be easier to use than -q for signals with significant
high-frequency content, since it does not require precise location of signal extrema. As noted
above, the standard method is more accurate if it can be used.

-s signal-list

Calibrate only the signals named in the signal-list (one or more input signal numbers or names,
separated by spaces; default: calibrate all signals).

-t time Process until the specified time in record (default: 1 second after the starting time).

-v Ask for calibration pulse limits (default: read limits from the calibration file).

ENVIRONMENT
It may be necessary to set and export the shell variables WFDB and WFDBCAL (see setwfdb(1)).

Calibration files must be located in one of the directories named in WFDB, the database path. If the envi-
ronment variable WFDBCAL is set, it names a calibration file that will be read unless the -c option is used
to specify a different calibration file. At most one calibration file is read; if more than one -c option is
given, only the last one is effective. If the calibration file does not contain an entry for the type of signal to
be calibrated, calsig obtains the information from the user interactively. If the calibration file contains two
or more entries for the same signal type, only the first entry is used.

10 7 January 2009 WFDB 10.4.12

CALSIG(1) WFDB Applications Guide CALSIG(1)

SEE ALSO
setwfdb(1), wfdbcal(5)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/calsig.c

WFDB 10.4.12 7 January 2009 11

COHERENCE(1) WFDB Applications Guide COHERENCE(1)

NAME
coherence − estimate coherence and cross-spectrum of two time series

SYNOPSIS
coherence -i file [options ...]

DESCRIPTION
coherence estimates the coherence and cross-spectrum of a pair of real-valued time series; as a byproduct
of its calculation of coherence, it also estimates the autospectra of each of its input time series. The file

argument specifies the name of a text file containing the samples of the series in two columns. The stan-
dard output contains five columns of numbers (optionally preceded by column headings), which are fre-
quency (Hz), coherence, cross-spectral power (dB), autospectral power (dB) of the first time series, and
autospectral power (dB) of the second time series.

This program is based on a Fortran program by C.R. Arnold, G.C. Carter, and J.F. Ferrie, as described in ‘A
coherence and cross-spectral estimation program’, by G.C. Carter and J.F. Ferrie, in Programs for Digital

Signal Processing, edited by the Digital Signal Processing Committee of the IEEE ASSP Society (New
York: IEEE Press, 1979). The functions fft842() and its auxiliary functions r2tx(), r4tx(), and r8tx(), are
based on Fortran subroutines by G.D. Bergland and M.T. Dolan, as described by them in ‘Fast Fourier
transform algorithms’, also included in Programs for Digital Signal Processing.

Options are:

-f frequency

Specify the sampling frequency in Hz (default: 250).

-n n Process the input in overlapping chunks of n samples (default: 1024). For best results, n should be
a power of two.

-v Print column headings.

-x sx sy Specify multiplicative scale factors for the two time series (defaults: 1). A reasonable choice is to
use the reciprocals of the standard deviations of the respective time series if these differ signifi-
cantly.

Note that the scale factors generally have little or no visible effect on the coherence or on the shape of the
spectra. The choice of chunk size (using the -n option) will have a significant effect; some experimenta-
tion may be needed to determine an appropriate chunk size in each case.

SEE ALSO
fft(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/psd/coherence.c

12 24 July 2002 WFDB 10.2.7

DFA(1) WFDB Applications Guide DFA(1)

NAME
dfa − detrended fluctuation analysis

SYNOPSIS
dfa [option ...]

DESCRIPTION
The method of detrended fluctuation analysis (DFA) has proven useful in revealing the extent of long-range
correlations in seemingly irregular time series.

Briefly, the time series to be analyzed is first integrated. Next, the integrated time series is divided into
boxes of equal length, n. In each box of length n, a least squares line (or polynomial curve of order k) is fit
to the data (representing the trend in that box). Next, we detrend the integrated time series by subtracting
the local trend in each box. The root-mean-square fluctuation of this integrated and detrended time series is
calculated and denoted as F(n).

This computation is repeated over all time scales (box sizes), from n = minbox to n = maxbox, to character-
ize the relationship between F(n), the average fluctuation, and n, the box size. Typically, F(n) will increase
with box size n. A linear relationship on a log-log plot indicates the presence of power law (fractal) scal-
ing. Under such conditions, the fluctuations can be characterized by a scaling exponent, i.e., the slope of
the line relating log[F(n)] to log[n].

This program performs detrended fluctuation analysis on a sequence of data read from the standard input
(which should contain a single column of numbers in text format). The standard output contains two col-
umns of numbers, which are the base 10 logarithms of n and F(n). Note that dfa does not compute a scal-
ing exponent; to do so, fit the output to a line and measure its slope.

Options may include:

-d k Detrend the data using a polynomial of degree k (1: linear, 2: quadratic, etc.). Default: k = 1 (lin-
ear detrending).

-h Print a usage summary and exit.

-i Do not integrate the input series. Use this option if the input series is already integrated (for exam-
ple, if it represents times of occurrence rather than intervals).

-l minbox

Set the smallest box width. The default, and the minimum allowed value for minbox, is 2k + 2

(where k is determined by the -d option, see above).

-s Perform a sliding window DFA (measure the fluctuations using all possible boxes at each box
size). By default, fluctuations are measured using non-overlapping boxes only. Using the -s
option will make the calculation much slower.

-u maxbox

Set the largest box width. The default, and the maximum allowed value for maxbox, is one-fourth
the length of the input series.

SEE ALSO
The DFA method was first proposed in Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Gold-
berger AL. Mosaic organization of DNA nucleotides. Phys Rev E 1994;49:1685-1689.

A detailed description of the algorithm and its application to physiologic signals can be found in Peng C-K,
Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in
nonstationary heartbeat time series. Chaos 1995;5:82-87.

AV AILABILITY
dfa is available as part of PhysioToolkit under the GPL (see SOURCE below).

AUTHORS
JE Mietus (joe@physionet.org), C-K Peng, and GB Moody, based on C-K Peng’s original Fortran imple-
mentation.

DFA 4.2 31 July 2002 13

DFA(1) WFDB Applications Guide DFA(1)

SOURCE
http://www.physionet.org/physiotools/dfa/dfa.c

14 31 July 2002 DFA 4.2

ECGEVAL(1) WFDB Applications Guide ECGEVAL(1)

NAME
ecgeval − generate and run ECG analyzer evaluation script

SYNOPSIS
ecgeval

DESCRIPTION
This program generates a Bourne shell (sh(1)) script under UNIX, or a batch file under MS-DOS, to com-
pare a set of test annotation files with a set of reference annotation files and a set of reference heart rate
measurement files using the programs bxb(1), rxr(1), mxm(1), and epicmp(1), and then to produce sum-
mary reports by passing the outputs of these programs to sumstats(1) and plotstm(1).

ecgeval asks interactively for the annotator names, the name of the database to be used, and which optional
analyzer outputs are to be evaluated. It then creates the evaluation script, and offers the user a choice of
running the script immediately, or exiting (in order to review and perhaps edit the script before running it).

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

FILES
dblist

This file, which should be located in one of the directories named by WFDB, contains a list of the
available databases. Each entry is a line containing three tab-separated fields: the short name for
the database, the name of a file (which must also be in one of the directories named by WFDB)
containing a list of the record names for the database, and a longer name for the database. Empty
lines and lines beginning with ‘#’ are ignored. The version of this file distributed with the WFDB
software package contains:

MIT DB mitlist MIT-BIH Arrhythmia Database
MITx DB mitxlist MIT-BIH Arrhythmia Database (excluding paced records)
AHA DB ahalist AHA Database for Evaluation of Ventricular Arrhythmia Detectors
AHAx DB ahaxlist AHA Database (excluding paced records)
ESC DB esclist European ST-T Database
NST DB nstlist Noise Stress Test Database
CU DB culist Creighton University Sustained Ventricular Arrhythmia Database

SEE ALSO
bxb(1), epicmp(1), mxm(1), plotstm(1), rxr(1), setwfdb(1), sumstats(1)
Evaluating ECG Analyzers

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/ecgeval.c

WFDB 10.3.0 22 November 2002 15

ECGPUWAVE(1) WFDB Applications Guide ECGPUWAVE(1)

NAME
ecgpuwav e − QRS detector and wav eform limit locator

SYNOPSIS
ecgpuwave -r record -a annotator [options ...]

DESCRIPTION
ecgpuwave analyses an ECG signal from the specified record, detecting the QRS complexes and locating
the beginning, peak, and end of the P, QRS, and ST-T wav eforms. The output of ecgpuwave is written as a
standard WFDB-format annotation file associated with the specified annotator. This file can be converted
into text format using rdann(1) or viewed using wave(1).

The QRS detector is based on the algorithm of Pan and Tompkins (reference 1) with some improvements
that make use of slope information (reference 2). Optionally, QRS annotations can be provided as input
(see option -i), permitting the use of external QRS detectors such as sqrs(1) or manually-edited annotations
(which can be created using wave(1)). The waveform limit locator is based on the algorithm described in
reference 3 and evaluated in references 3 and 4.

The output annotation file contains PWAVE ("p") and TWAVE ("t") annotations that indicate the P- and
T-wave peaks, as well as QRS annotations (NORMAL ("N") if generated by the built-in QRS detector, or
copies of the input QRS annotations if these were supplied). ecgpuwave classifies each T wav e as type 0
(normal), 1 (inverted), 2 (positive monophasic), 3 (negative monophasic), 4 (biphasic negative-positive), or
5 (biphasic positive-negative); this numeric classification is written into the num field of each TWAVE
annotation. The P, QRS, and T wav eform onsets and ends are marked in the output annotation file using
WFON ("(") and WFOFF (")") annotations. The num field of each WFON and WFOFF annotation desig-
nates the type of wav eform with which it is associated: 0 for a P wav e, 1 for a QRS complex, or 2 for a T
wave.

Options include:

-f time Begin at the specified time (default: the beginning of the record).

-i input-annotator

Read QRS locations from the specified input-annotator (and copy them to the output annotation
file). Default: run the built-in QRS detector.

-n beat-type

Specify which beats to process (must be used together with -i): beat_type may be 0 (default:
process all beats) or 1 (process only beats labelled as NORMAL ("N") by the input annotator).

-s n Analyze signal n (default: signal 0).

-t time Stop at the specified time (default: the end of the record).

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
rdann(1), sqrs(1), wave(1), wqrs(1)

REFERENCES
1. Pan J and Tompkins WJ. A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical

Engineering 32(3):230-236, 1985.
2. Laguna P. New Electrocardiographic Signal Processing Techniques: Application to Long-term Records.

Ph. D. dissertation, Science Faculty, University of Zaragoza, 1990.
3. Laguna P, Jané R, Caminal P. Automatic Detection of Wav e Boundaries in Multilead ECG Signals: Vali-
dation with the CSE Database. Computers and Biomedical Research 27(1):45-60, 1994.
4. Jané R, Blasi A, García J, and Laguna P. Evaluation of an automatic threshold based detector of wav e-
form limits in Holter ECG with the QT database. Computers in Cardiology 24:295-298 (1997; available at
http://www.physionet.org/physiobank/database/qtdb/eval/)

16 22 November 2002 ecgpuwav e 1.0

ECGPUWAVE(1) WFDB Applications Guide ECGPUWAVE(1)

AV AILABILITY
ecgpuwave is available as part of PhysioToolkit under the GPL (see SOURCE below).

AUTHORS
Pablo Laguna (laguna@posta.unizar.es), Raimon Jané, Eudald Bogatell, and David Vigo Anglada

SOURCE
http://www.physionet.org/physiotools/ecgpuwav e/src/

ecgpuwav e 1.0 22 November 2002 17

EDF2MIT(1) WFDB Applications Guide EDF2MIT(1)

NAME
edf2mit, mit2edf − convert between EDF and WFDB-compatible formats

SYNOPSIS
edf2mit -i edffile [options ...]
mit2edf -r record [options ...]

DESCRIPTION
These programs convert EDF (European Data Format) files into WFDB-compatible files (as used in Phys-
ioBank) and vice versa. European Data Format was originally designed for storage of polysomnograms.

edf2mit reads the specified edffile and creates WFDB-compatible signal and header files containing the
same data. Options for edf2mit include:

-b Input is in big-endian byte order (default: little-endian).

-h Print a brief usage summary.

-r record

Create the specified record (default: use the patient ID field from the input file as the record name).

-s signal-list

Copy only the signals named in the signal-list (one or more input signal numbers, separated by
spaces; default: copy all signals). Signals are numbered consecutively beginning with zero. This
option may be used to re-order or duplicate signals.

-v Verbose mode (print debugging output).

mit2edf reads the specified WFDB-format record (header and signal files) and creates an EDF file contain-
ing the same data. Output from mit2edf is always in the standard little-endian format. Options for
mit2edf include:

-h Print a brief usage summary.

-o file Write output to the specified file (default: record.edf).

-v Verbose mode (print debugging output).

Note that WFDB format does not include a standard way to specify the transducer type or the prefiltering
specification; these parameters are not preserved by these conversion programs. Also note that use of the
standard signal and unit names specified for EDF is permitted but not enforced by mit2edf.

Many EDF files contain signals at widely varying sampling frequencies. edf2mit handles these properly,
but the default behavior of most WFDB applications is to read such data in low-resolution mode (in which
all signals are resampled at the lowest sampling frequency used for any signal in the record). This is almost
certainly not what you want if, for example, the record contains EEG signals sampled at 200 Hz and body
temperature sampled at 1 Hz; by default, applications such as rdsamp and wave will resample the EEGs
(and any other signals in the record) at 1 Hz. To avoid this behavior, you can use the -H (high resolution)
option provided by rdsamp, wave, and a few other WFDB applications, or you can set the environment
variable WFDBGVMODE to 1 (or any non-zero value) to specify that signals are to be read in high-reso-
lution mode (in which all signals are resampled at the highest frequency used for any signal in the record).
Setting WFDBGVMODE works with all WFDB applications, not only those that support the -H option.
For further information, see the section titled "Multi-Frequency Records" in chapter 5 of the WFDB Pro-

grammer’s Guide.

Note that applications built using version 10.4.5 and later versions of the WFDB library can read EDF files
directly, so that the conversion performed by edf2mit is no longer necessary. The native WFDB files pro-
duced by edf2mit can be read more efficiently and with lower latency and memory requirements than the
EDF files; in most cases, however, the difference will not be noticeable.

18 28 October 2009 WFDB 10.4.24

EDF2MIT(1) WFDB Applications Guide EDF2MIT(1)

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

AV AILABILITY
These programs are provided in the convert directory of the WFDB Software Package. Run make in that
directory to compile and install them if they hav e not been installed already.

The PhysioNet ATM (http://physionet.org/cgi-bin/ATM) provides web access to mit2edf (select Export
signals as EDF from the Toolbox).

SEE ALSO
a2m(1), rdedfann(1), snip(1), xform(1), wfdb(3), header(5)

Bob Kemp, Alpo Värri, Agostinho C. Rosa, Kim D. Nielsen and John Gade. A simple format for exchange
of digitized polygraphic recordings. Electroencephalography and Clinical Neurophysiology

82:391-393 (1992).

Bob Kemp’s EDF web site (http://www.edfplus.info/). The definitive reference on the format; it includes
the full specification of EDF from the 1992 paper, sample EDF files, software for reading and
viewing them, FAQs, and much more.

AUTHOR
George B. Moody (george@mit.edu)

SOURCES
http://www.physionet.org/physiotools/wfdb/convert/edf2mit.c
http://www.physionet.org/physiotools/wfdb/convert/mit2edf.c

WFDB 10.4.24 28 October 2009 19

EDR(1) WFDB Applications Guide EDR(1)

NAME
edr − derive a respiration signal from an ECG

SYNOPSIS
edr -r record -i annotator [options ...]

DESCRIPTION
edr derives a sample of a respiratory signal for each QRS complex in the input ECG, by measuring the
mean electrical axis (in two-channel mode) or the projection of that axis onto the lead axis (in single-chan-
nel mode). See the references below for details of the algorithm.

edr reads the signal and annotation files specified by record and annotator, and writes another annotation
file, which is a copy of the input annotation file except that the num field of each beat annotation is
replaced by an EDR sample.

If the beat annotations are not located at the QRS peaks, it will be necessary to set the window limits (the
offsets relative to the annotations between which the raw measurements for the EDR are taken), using the
-d option. By default, edr behaves as if the option -d -0.04 0.04 has been given (in other words, measure-
ments are taken over an 80 ms window beginning 40 ms (.04 seconds) before the annotation, and ending 40
ms after the annotation); this default is reasonable if the QRS annotations have been placed on or near the
QRS peaks or centroids. If edr is supplied with annotations generated by sqrs, or another method that
places the annotations near the PQ junction (the beginning of the QRS complex), the option -d 0 0.08 is
recommended.

For ECGs sampled at relatively low rates (e.g., 100-128 Hz, as is common for many long-term ECG record-
ings), it may be advantageous to base the EDR on the T-wav e rather than the QRS complex, by choosing a
window such as -d -0.08 0.28 or -d -0.12 0.32 (for annotations placed at the QRS peaks or PQ junctions
respectively), since this permits an axis estimation based on a larger number of samples. Note that the use
of a negative value for dt1, as in these examples, allows the beginning of the EDR measurement window to
be placed after the QRS annotation.

Options include:

-d dt1 dt2

Set the EDR measurement window relative to QRS annotations (defaults: dt1 = 0.04 (seconds
before annotation), dt2 = 0.04 (seconds after annotation).

-f time Begin at the specified time (default: the beginning of the record).

-h Print a usage summary.

-o ann Use ann as the output annotator name (default: edr).

-s signal-list

Analyze only the signals named in the signal-list (one or more input signal numbers, separated by
spaces; default: analyze signals 0 and 1). If the signal-list contains more than two signals, only
the first two are analyzed.

-t time Stop at the specified time.

-v Verbose mode: print individual measurements.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

Example
edr -r 100 -i atr -f 0 -t 5:0

This command creates an annotation file named edr.100, containing a copy of the reference (atr) annota-
tion file for the first five minutes of record 100, with EDR measurements for each annotated beat in the
num fields of the output annotation file.

AV AILABILITY
edr is available as part of PhysioToolkit under the GPL (see SOURCE below).

20 28 October 2002 EDR 1.0

EDR(1) WFDB Applications Guide EDR(1)

SEE ALSO
plt(1), rdann(1), setwfdb(1)
Moody GB, Mark RG, Zoccola A, Mantero S. Derivation of respiratory signals from multi-lead ECGs.
Computers in Cardiology 12:113-116 (1985; available at http://www.physionet.org/physiotools/edr/cic85/)
Moody GB, Mark RG, Bump MA, et al. Clinical validation of the ECG-derived respiration (EDR) tech-
nique. Computers in Cardiology 13:507-510 (1986; available at http://www.physionet.org/phys-
iotools/edr/cic86/)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/edr/edr.c

EDR 1.0 28 October 2002 21

EPICMP(1) WFDB Applications Guide EPICMP(1)

NAME
epicmp − ANSI/AAMI-standard episode-by-episode annotation comparator

SYNOPSIS
epicmp -r record -a reference-annotator test-annotator [options ...]

DESCRIPTION
This program implements the VF, AF, and ST episode-by-episode comparison algorithms specified by the
current American National Standard for ambulatory ECG analyzers (ANSI/AAMI EC38:2007). epicmp is
the reference implementation of these algorithms, and must be used to obtain the episode-by-episode per-
formance statistics cited in EC38 in order to be in compliance with the standard (see EC38, section 5.2.14).

Input to this program consists of two annotation files associated with the same record. One of these is des-
ignated the reference annotation file, the other the test annotation file.

Options include:

-A file Append atrial fibrillation detection reports to the specified file.

-f time Begin the comparison at the specified time (default: 5 minutes after the beginning of the record).

-h Print a usage summary.

-i time Exclude episodes shorter than time (default: 0 seconds) from episode statistics.

-I time Exclude episodes shorter than time (default: 0 seconds) from episode and duration statistics. (At
most one of -i and -I may be used.)

-l Write reports in line format (default: matrix format).

-L Same as -l.

-S file1 file2

Append ischemic ST episode detection reports to file1, and ST deviation measurements to file2.

-S0 file1 file2

As for -S, but report on signal 0 only.

-S1 file1 file2

As for -S, but report on signal 1 only.

-t time Stop the comparison at the specified time (default: the end of the record if it is defined, the end of
the reference annotation file otherwise; if time is 0, the comparison ends when the end of either
annotation file is reached).

-V Append ventricular flutter and fibrillation detection reports to the specified file.

-x Exclude periods of atrial fibrillation from calculations of atrial fibrillation positive predictivity, as
required by EC38:1998 (default: include these periods, as required by EC38:2007).

The episode and duration statistics gathered by epicmp are based on tallies of overlapping episodes in the
reference and test annotation files. Duration statistics give weight to each episode or detection in propor-
tion to its duration. Episode statistics give equal weight to each episode or detection, irrespective of length;
each test-annotated episode that meets the criteria for overlap (see below) with a reference-annotated
episode is counted as a true positive. Episodes are defined as follows (see <wfdb/ecgcodes.h> for defini-
tions of annotation types):

Atrial fibrillation episodes

begin with a RHYTHM annotation, with the aux field containing the text ‘(AFIB’, and end with
any other RHYTHM annotation (or at the end of the record). Reference-marked episodes of atrial
flutter (begun by RHYTHM annotations with the text ‘(AFL’) are excluded from AF comparisons
(i.e., the test annotator is neither penalized nor rewarded for its treatment of atrial flutter in this
context). Any amount of overlap is sufficient to qualify a test episode as a true positive.

22 10 July 2003 WFDB 10.3.8

EPICMP(1) WFDB Applications Guide EPICMP(1)

Ventricular fibrillation or flutter episodes

begin with a VFON annotation, and end with a VFOFF annotation (or at the end of the record).
RHYTHM annotations are ignored in this context by epicmp. Any amount of overlap is suffi-
cient to qualify a test episode as a true positive.

Ischemic ST episodes

begin with a STCH annotation, with the aux field containing the text ‘(STns’, and end with
another STCH annotation, with the text ‘STns)’ (or at the end of the record). Between these
annotations, the extremum (the time at which the absolute value of the ST deviation is greatest) is
marked with another STCH annotation, with the text ‘ASTnsm’; this annotation may be omitted
in the test annotation file. In these annotations, n is ‘0’ or ‘1’, and denotes the affected signal; s is
‘+’ for episodes of ST elevation, or ‘-’ for episodes of ST depression; and m is the ST deviation in
microvolts, relative to a reference level established from the first 30 seconds of the record. The
values of s and m are not significant for the episode comparison made by epicmp. When using the
-S0 or -S1 options, n must be 0 or 1 respectively; other STCH annotations are ignored. When
using the -S option, the value of n is ignored: each ‘(STns’ annotation increments a counter, and
each ‘STns)’ annotation decrements the counter; in this context, ST episodes begin when the
counter becomes positive and end when the counter reaches zero (or at the end of the record). To
qualify a test episode as a true positive for purposes of determining ST episode sensitivity, it must
overlap at least 50% of the reference episode, or the overlap must include the reference-marked
extremum. To qualify a test episode as a true positive for purposes of determining ST episode pos-
itive predictivity, the reference episode must overlap at least 50% of the test episode, or the overlap
must include the test-marked extremum, if present.

The second file generated when using the ‘-S’, ‘-S0’, or ‘-S1’ options contains comparisons of ST deviation
measurements wherever such measurements are available in the reference annotation files. In the existing
databases, these appear only at extrema within each annotated ischemic (or non-ischemic) ST episode, as
described above. For purposes of comparison of ST deviation measurements, test ST measurements for
each signal are read from the aux field of beat annotations, which should contain text of the format ‘m n’
(where m and n are the measured ST deviations for signals 0 and 1 respectively). If these measurements are
missing from any test beat annotation, epicmp assumes that they hav e not changed since they last appeared.
epicmp ignores ‘AST...’ annotations in the test annotation file when making this comparison. In the output
file, any test measurements that deviate from the reference measurements by more than 100 microvolts are
tagged with an asterisk (‘*’). plotstm(1) can produce a scatter plot of these data using this file as input.

At least one of the options ‘-A’, ‘-S’, ‘-S0’, ‘-S1’, and ‘-V’ must be used. If ‘-’ is giv en as a file argument,
reports are written on the standard output. The output generated by selecting -l or -L includes column
headings only if a file other than ‘-’ is specified, and only if the specified file does not already exist. In this
way, epicmp can be used repeatedly to build up line-format tables for multiple records, for further process-
ing by sumstats(1).

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

DIAGNOSTICS
non-standard comparison selected

The -f, -i, -I, and -t options modify the comparison algorithms used by epicmp in ways not per-
mitted by EC38. These options are provided for the use of developers, who may find them useful
for obtaining a more detailed understanding of algorithm errors.

BUGS
Since epicmp performs multiple passes over its input files, it cannot be used at the end of a pipe.

Between 1992 and 2002, this program was known as epic; the name was changed to avoid conflict with a
new but widely distributed IRC chat client also named epic. By analogy to bxb, mxm, and rxr, this pro-
gram should have been called exe, which would have created interesting possibilities for confusion.

WFDB 10.3.8 10 July 2003 23

EPICMP(1) WFDB Applications Guide EPICMP(1)

SEE ALSO
bxb(1), ecgeval(1), mxm(1), plotstm(1), rxr(1), setwfdb(1), sumstats(1)
Evaluating ECG Analyzers (in the WFDB Applications Guide)
American National Standard ANSI/AAMI EC38:1998, Ambulatory Electrocardiographs; available from
AAMI, 1110 N Glebe Road, Suite 220, Arlington, VA 22201 USA (http://www.aami.org/).

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/epicmp.c

24 10 July 2003 WFDB 10.3.8

FFT(1) WFDB Applications Guide FFT(1)

NAME
fft − fast Fourier transform

SYNOPSIS
fft [options ...] input-file

DESCRIPTION
fft transforms a real-valued time series (from the specified input-file, or from the standard input if input-file

is specified as ‘‘-’’; input-file must be in text form) into a frequency spectrum (on the standard output).
Using appropriate options, fft can produce polar or rectangular format amplitude spectra, or power spectra,
or it can perform an inverse FFT to transform a polar or rectangular format amplitude spectrum into a time
series. The input series may be corrected if it has a non-zero mean amplitude or first derivative (by ‘zero-
meaning’ or ‘detrending’ the input series). Output spectra may be smoothed in several different ways.

By default, the standard output is the magnitude of the discrete Fourier transform of the input series, nor-
malized such that the mean of the squares of the inputs is equal to the sum of the squares of the outputs
(i.e., the RMS power determined from the time series equals the total power determined from the spectrum;
this normalization is correct only if the input series has a mean value of zero).

Options are:

-c Output unnormalized complex FFT (real components in first column, imaginary components in
second column).

-f frequency

Show the center frequency for each bin in the first column. The frequency argument specifies the
input sampling frequency; the center frequencies are given in the same units.

-h Print a usage summary.

-i Perform inverse FFT; in this case, the standard input should be in the form generated by fft -c, and
the standard output is a series of samples. No other options may be used with -i.

-I Perform inverse FFT as above, but using input generated by fft -p. No other options may be used
with -I.

-l n Perform up to n-point transforms. fft rounds n up to the next higher power of two unless n is
already a power of two. If the input series contains fewer than n samples, it is padded with zeros
up to the next higher power of two. Any additional input samples beyond the first n are not read.
Default: n = 16384.

-n n Process the input in overlapping chunks of n samples and output an averaged spectrum. If used in
combination with -P, the output is the average of the individual squared magnitudes; otherwise,
the output is derived from the averages of the real components and of the imaginary components
taken separately. For best results, n should be a power of two.

-N n Process the input in overlapping chunks of n samples and output a spectrum for each chunk. Suc-
cessive spectra are concatenated in the output. Only one of -n and -N may be used at a time. For
best results, n should be a power of two.

-p Show the phase in radians in the last column.

-P Generate a power spectrum (print squared magnitudes).

-s n Smooth the output by applying an n-point moving average to each bin. This option does not
change the number of bins.

-S n Smooth the output by summing sets of n consecutive bins. This option reduces the number of bins
by a factor of n.

-w window-type

Apply the specified window to the input data. window-type may be one of: ‘Bartlett’, ‘Blackman’,
‘Blackman-Harris’, ‘Hamming’, ‘Hanning’, ‘Parzen’, ‘Square’, and ‘Welch’. The ‘Square’ win-
dow type is equivalent to using no window at all; this is also variously known as a rectangular or
Dirichlet window.

WFDB 10.2.7 8 August 2002 25

FFT(1) WFDB Applications Guide FFT(1)

-z Add a constant to each input sample, chosen such that the mean value of the entire series is zero.

-Z Set the mean value of the inputs to zero as for -z, and detrend the series (set its mean first deriva-
tive to zero). This is equivalent to subtracting a best-fit (by least squares) line from the input data.

BUGS
Because of accumulated round-off errors, the command

fft -p <file1 | fft -I >file2

may not produce an exact copy of file1 in file2, even if the number of samples is an exact power of 2. Using
rectangular form, as in the command

fft -c <file1 | fft -i >file2

produces smaller errors, and is slightly faster than using polar form as in the first example.

SEE ALSO
coherence(1), hrfft(1), lomb(1), memse(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/psd/fft.c

26 8 August 2002 WFDB 10.2.7

FIR(1) WFDB Applications Guide FIR(1)

NAME
fir − general-purpose FIR filter for WFDB records

SYNOPSIS
fir [options ...] -c [coefficients ...]

DESCRIPTION
fir can be used to apply any desired finite impulse response filter to any desired section of a wav eform data-
base record. Options are:

-c coefficient [coefficient ...]
Filter using the specified coefficients (must be the last option; -c marks the beginning of the coeffi-
cient list).

-C file Read the filter coefficients from the specified file rather than from the argument list.

-f time Filter from the specified time on the input record (default: start at the beginning of the record).

-h Print a usage summary.

-H Read the signal files in high-resolution mode (default: standard mode). These modes are identical
for ordinary records. For multifrequency records, the standard decimation of oversampled signals
to the frame rate is suppressed in high-resolution mode (rather, all other signals are resampled at
the highest sampling frequency).

-i record

Use the specified record for input (default: record 16).

-n record

Create a header file for the output signals, with the specified record name. The signal descriptions
are copied from those of the input signals.

-o record

Use the specified record for output (default: record 16).

-ri Rectify the input (i.e., take its absolute value) before filtering.

-ro Rectify the filtered output.

-s shift To compensate for phase shift, read ahead on the input record by the specified interval before start-
ing the filter. Shift is specified in standard time format (use snn to compensate for a phase shift of
nn samples).

-t time Filter until the specified time on the input record (default: go to the end of the record).

Unless the -C option is used, the -c argument should appear at the end of the option list. Filter coefficients
are real numbers separated by spaces; the last coefficient is applied to the most recent input sample.

In the present implementation, the same filter is applied to each input signal. If the output record header
file specifies fewer signals than are present in the input, any extra input signals are discarded.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

Examples
A low-pass "boxcar" filter:

fir -c .2 .2 .2 .2 .2

The complementary high-pass filter:
fir -c -.2 -.2 .8 -.2 -.2

An attenuator:
fir -c .4

A differentiator:
fir -c -1 1

A 60-Hz notch filter, with partial correction for phase shift, for the MIT−BIH database (360

WFDB 10.4.0 25 February 2006 27

FIR(1) WFDB Applications Guide FIR(1)

samples/second):
fir -s s2 -c .5 0 0 .5

A "triangle" filter for QRS detection (at 128 samples/second):
fir -s s8 -c -1 -2 -3 -4 -1 2 5 8 5 2 -1 -4 -3 -2 -1

SEE ALSO
mfilt(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/fir.c

28 25 February 2006 WFDB 10.4.0

GQFUSE(1) WFDB Applications Guide GQFUSE(1)

NAME
gqfuse − combine QRS annotation files

SYNOPSIS
gqfuse -r record -a annotator1 annotator2 ... [options ...]

DESCRIPTION
gqfuse produces a QRS annotation file based on two or more input QRS annotation files with annotator
names annotator1, annotator2, etc. Each one-minute segment of the output annotation file is a copy of the
corresponding segment of one of the input annotation files. In each segment, the program copies the input
that best matches a predicted heart rate. If there are N inputs, the prediction is the median of N+1 values
(the previous prediction and the number of beats marked within the current segment of each of the N input
files). Although this process allows the input to be switched once per minute, the policy for resolving ties
(within 2 beats) favors not switching if the previously chosen input is one of those belonging to the tie.

As its name suggests, gqfuse is intended to be used as a companion to the gqrs(1) QRS detector, but it is
able to process annotations from any beat detector. Non-beat annotations (e.g., rhythm, signal quality, arti-
fact, non-QRS wav eforms, and notes) are copied to the output if present in the best matching input seg-
ments, but they are not counted as beats by gqfuse when it makes heart rate predictions.

One way to use gqfuse is to combine input annotation files for each available ECG signal in a record, made
using a single detector such as gqrs. Another is to combine input annotation files made using a variety of
QRS detectors. These ideas can be combined as desired.

A configuration file, which can be shared with gqrs and gqpost(1), can be used to specify the expected
heart rate. (In future versions, other parameters in the configuration file may also be used by gqfuse). The
configuration file is unnecessary when processing adult human ECGs, but an appropriately constructed con-
figuration file allows gqrs to analyze fetal, pediatric, and animal ECGs.

Options include:

-c file Initialize parameters based on the specified (text) configuration file. See the example configuration
file, gqrs.conf, for details.

-h Print a usage summary.

-o name

Write annotations to an annotation file with the specified annotator name (default: gqf).

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
gqrs(1), ecgpuwave(1), setwfdb(1), sqrs(1), wqrs(1)

AUTHORS
George B. Moody (george@mit.edu).

SOURCES
http://www.physionet.org/physiotools/wfdb/app/gqfuse.c
http://www.physionet.org/physiotools/wfdb/app/gqrs.conf

WFDB 10.5.15 25 September 2012 29

GQRS(1) WFDB Applications Guide GQRS(1)

NAME
gqrs, gqpost − QRS detector and post-processor

SYNOPSIS
gqrs -r record [options ...]
gqpost -r record [options ...]

DESCRIPTION
gqrs attempts to locate QRS complexes in an ECG signal in the specified record. The detector algorithm is
new and as yet unpublished. The output of gqrs is an annotation file (with annotator name qrs) in which
all detected beats are labelled normal ("N"). The subtyp, chan, and num fields of each annotation respec-
tively indicate the detection pass (0 or 1) during which the QRS complex was detected, the signal number
on which it was detected, and the peak amplitude of the detector’s matched filter during the QRS complex.

As a QRS detector for research, gqrs has been optimized for sensitivity. gqpost can post-process gqrs’s
output annotation file to improve positive predictivity, generally at a cost of reduced sensitivity. It does this
by copying its input annotation file, changing N annotations into artifact ("|") annotations if they are likely
to be erroneous.

A configuration file shared by gqrs and gqpost can be used to describe some of the expected characteristics
of the ECG signal. This is unnecessary when processing adult human ECGs, but an appropriately con-
structed configuration file allows gqrs to analyze fetal, pediatric, and animal ECGs. A sample configura-
tion file is available (see SOURCES, below); it contains details about all configurable parameters.

Options include:

-a annotator

[gqpost only] Read annotations from the specified annotator (default: qrs).

-c file Initialize parameters based on the specified (text) configuration file. See the example configuration
file, gqrs.conf, for details.

-f time Begin at the specified time in record (default: the beginning of record).

-h Print a usage summary.

-H Read the signal files in high-resolution mode (default: standard mode).

-m threshold

Specify the threshold (default: 1.0) for detection [qqrs] or acceptance [gqpost]. Use higher values
to reduce false detections, or lower values to reduce the number of missed beats.

-n name

[gqrs only] Save the filtered signals in a new record with the specified record name.

-o name

[gqpost only] write annotations to an annotation file with the specified annotator name.

-s signal

[gqrs only] Specify the signal to be used for QRS detection (default: 0). Note that signals may be
specified by number or name.

-t time Process until the specified time in record (default: the end of the record).

Note that gqpost always copies its entire input annotation file. The -f and -t options, if present, only define
the interval during which gqpost may change annotations. Since gqpost can reprocess its own output, this
feature allows multiple passes using different threshold values and processing intervals, if necessary.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

EXAMPLES
To mark QRS complexes in record 100 beginning 5 minutes from the start, ending 10 minutes and 35 sec-
onds from the start, and using signal 1, use the command:

gqrs -r 100 -f 5:0 -t 10:35 -s 1

30 21 July 2013 WFDB 10.5.19

GQRS(1) WFDB Applications Guide GQRS(1)

The output annotations may be read using (for example):
rdann -a qrs -r 100

To evaluate the performance of this program, run it on the entire record, by:
gqrs -r 100

and then compare its output with the reference annotations by:
bxb -r 100 -a atr qrs

SEE ALSO
bxb(1), ecgpuwave(1), rdann(1), setwfdb(1), sqrs(1), wqrs(1), xform(1)

AUTHORS
George B. Moody (george@mit.edu).

SOURCES
http://www.physionet.org/physiotools/wfdb/app/gqrs.c
http://www.physionet.org/physiotools/wfdb/app/gqpost.c
http://www.physionet.org/physiotools/wfdb/app/gqrs.conf (sample configuration file)

WFDB 10.5.19 21 July 2013 31

HRFFT(1) WFDB Applications Guide HRFFT(1)

NAME
hrfft, hrlomb, hrmem − calculate and plot heart rate power spectra
hrplot − plot heart rate time series

SYNOPSIS
hrfft [options ...]
hrlomb [options ...]
hrmem [options ...]
hrplot [options ...]

DESCRIPTION
The first three of these UNIX shell scripts are intended to illustrate the use of fft(1), lomb(1), and
memse(1) by producing heart rate power spectra using the fast Fourier transform, the Lomb periodogram,
and the maximum entropy (all poles) method (also known as autoregressive, or AR, power spectral density
estimation). All four programs derive heart rate time series from beat annotation files. hrfft and hrmem
use tach(1) to obtain a uniformly resampled heart rate time series from the annotation file, which is then
used as input to fft or memse, and the spectrum thereby obtained is then plotted. hrlomb and hrplot use
ihr(1) to obtain an irregularly sampled heart rate time series. hrplot plots this time series directly, and
hrlomb uses it as input to lomb, and then plots the spectrum.

All four programs accept the same options:

-a annotator

Read annotations from the specified annotator (default: the value of the environment variable
ANNOTATOR, if set).

-f time Begin at the specified time within the annotation file (default: the value of the environment vari-
able START, if set, or the beginning of the file otherwise).

-l axes Log-transform the specified axes (default: use linear axes). The axes can be specified as x, y, or
xy.

-p plot-utility

Use the specified plot-utility to generate the output (default: the value of the environment variable
PLOT, if set, or plt(1), if it exists, or plot2d(1) otherwise).

-r record

Produce a heart rate power spectrum for the specified record (default: the value of the environment
variable RECORD, if set).

-t time Stop at the specified time within the annotation file (default: the value of the environment variable
END, if set, or the end of the file otherwise).

-T device

Produce output on the specified device (default: the screen). The device must be among those sup-
ported by the plot-utility (see above).

If annotator or record are not specified using environment variables or command-line options, these pro-
grams obtain values from the user interactively.

Although hrfft, hrlomb, and hrmem all produce power spectra, the units of power differ among them.
Absolute comparisons can be made only between spectra produced using the same method, from time
series of the same length.

Note that these shell scripts can be run under MS-DOS using a suitable set of UNIX-like utilities, such as
the MKS Toolkit or the GNUish MS-DOS utilities, and under MS-Windows using the free Cygwin pack-
age.

ENVIRONMENT
In addition to the variables ANNOTATOR, END, PLOT, RECORD, and START, it may be necessary to
set WFDB (see setwfdb(1)).

32 16 June 2003 WFDB 10.3.8

HRFFT(1) WFDB Applications Guide HRFFT(1)

SEE ALSO
fft(1), ihr(1), lomb(1), memse(1), plot2d(1), plt(1), setwfdb(1), tach(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCES
http://www.physionet.org/physiotools/wfdb/psd/hrfft
http://www.physionet.org/physiotools/wfdb/psd/hrlomb
http://www.physionet.org/physiotools/wfdb/psd/hrmem
http://www.physionet.org/physiotools/wfdb/psd/hrplot

WFDB 10.3.8 16 June 2003 33

HRSTATS(1) WFDB Applications Guide HRSTATS(1)

NAME
hrstats − collect and summarize heart rate statistics from an annotation file

SYNOPSIS
hrstats -r record -a annotator [options ...]

DESCRIPTION
hrstats reads the annotation file specified by record and annotator and produces a uniformly sampled and
smoothed instantaneous heart rate signal, using the IPFM model as originally implemented in tach.c. In
this context, heart rate (HR) is defined as ten times the number of beat-to-beat (RR) intervals (and fractional
intervals) within a 6-second HR measurement window, including intervals beginning and/or ending with
ectopic beats, and RR intervals are defined by the locations of consecutive beat annotations in the annota-
tion file.

The first HR window starts at the beginning of the first RR interval in the record and ends 6 seconds later.
Subsequent HR windows begin at 1-second intervals following the first, i.e, they overlap by 5/6 (83.33%).
HR windows that contain part or all of a very long (>3 sec) or very short (<0.2 sec) interval are discarded.
All others are used to generate HR measurements that are accumulated in a histogram with 1 bpm bins.

When all intervals have been processed, summary statistics calculated from the histogram are written to the
standard output and to a WFDB ’.info’ file, in this format:

<HR>: 71|73/75/81|86 +-1.8 bpm [atr]

This example is the output of ’hrstats -r mitdb/100 -a atr’. From left to right, it shows:

the characteristic that is summarized [HR]
extreme low value [in the example, 71]
5th percentile [73]
mean (trimmed, excluding outliers below 5th or above 95th percentiles) [75]
95th percentile [81]
extreme high value [86]
sample deviation (of values included in the trimmed mean) [1.8]
units of all statistics [bpm]
source of data [atr annotations]

Optionally, the HR histogram can also be written to a file containing two columns separated by a tab. The
second column contains the number of measurements of heart rate falling within 0.5 bpm of the heart rate
in the first column. The histogram includes only heart rates between the extreme low and extreme high
heart rates inclusive.

Options include:

-h Print a usage summary.

-o file Write the HR histogram to the specified file.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
ihr(1), tach(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/hrstats.c

34 6 April 2012 WFDB 10.5.11

IHR(1) WFDB Applications Guide IHR(1)

NAME
ihr − calculate instantaneous heart rate

SYNOPSIS
ihr -r record -a annotator [options ...]

DESCRIPTION
ihr reads an annotation file (specified by the annotator and record arguments) and produces an instanta-
neous heart rate signal (from the reciprocals of the interbeat intervals.) Unlike tach(1), however, ihr does
not resample its output in order to obtain uniform time intervals between output samples. (If there is any
variation whatsoever in heart rate, the intervals between output samples will be non-uniform.) This prop-
erty makes the output of ihr unsuitable for conventional power spectral density estimation, but ideal for
PSD estimation using the Lomb periodogram (see lomb(1)).

Options include:

-d tolerance

Reject beat-to-beat heart rate changes exceeding tolerance (in beats per minute; default: 10). Any
intervals for which the calculated heart rate would differ by more than the specified tolerance are
simply excluded from the output series. To disable this behavior, use a large value for tolerance

(e.g., 10000).

-f time Begin at the specified time in record (default: the beginning of record).

-h Print a usage summary.

-i Include all intervals bounded by QRS annotations (default: include intervals bounded by consecu-
tive supraventricular beats only).

-p type ...
Include intervals bounded by annotations of the specified types only. The type arguments should
be annotation mnemonics (e.g., N) as normally printed by rdann(1) in the third column. More
than one -p option may be used in a single command, and each -p option may have more than one
type argument following it. If type begins with ‘‘-’’, however, it must immediately follow -p (stan-
dard annotation mnemonics do not begin with ‘‘-’’, but modification labels in an annotation file
may define such mnemonics).

-t time Process until the specified time in record (default: the end of the record).

-v Print the output sample number before each output sample value.

-v, -vs, -vm, -vh, -V, -Vs, -Vm, -Vh
Print the elapsed times from the beginning of the record to the annotations that begin each interval,
as sample number (using -v), or in seconds (using -vs), minutes (using -vm), or hours (using -vh)
before each heart rate value. The options -V, -Vs, -Vm, and -Vh work in the same way, but the
printed times are those for the annotations that end the intervals. Only one of these options can be
used at a time; if none is chosen, -vs mode is used by default.

-x Exclude the interval immediately following each rejected interval. (Rejected intervals are those
bounded by excluded beats on at least one end, and those that do not satisfy the tolerance crite-
rion). By default, intervals following rejected intervals are included (unless they are rejected by
the tolerance criterion), and a third column is used to flag these intervals (a zero in the third col-
umn means the interval is normal, a one means it follows an excluded interval).

Reference (‘atr’) annotation files can be used as input to ihr, but files that contain manually-inserted anno-
tations are less suitable, since annotation placement is likely to be less consistent than in annotation files
generated by programs such as sqrs(1).

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

WFDB 10.2.7 30 July 2002 35

IHR(1) WFDB Applications Guide IHR(1)

SEE ALSO
lomb(1), setwfdb(1), sqrs(1), tach(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/ihr.c

36 30 July 2002 WFDB 10.2.7

IMAGEPLT(1) WFDB Applications Guide IMAGEPLT(1)

NAME
imageplt − plot a greyscale image

SYNOPSIS
imageplt -d nrows ncols [options ...] [file]

DESCRIPTION
imageplt provides a simple way to plot a greyscale image using plt(1). The required arguments, nrows and
ncols, specify the numbers of rows and columns in the image. The input file (or the standard input, if no
input file is specified) contains only the grey lev els for each pixel (0 = white, 1 = black). Each entry is an
ASCII-coded decimal floating point number, separated from adjacent entries by whitespace (one or more
spaces, tabs, or newlines). The first nrows entries are the grey lev els for column 0 of the image, botttom to
top, and each successive column from left to right of the image follows. If nrows is small, it may be conve-
nient to arrange the image file in columns and rows corresponding to those of the image, but this is not nec-
essary. In no case should the length of a line of input exceed 50000 bytes (defined as MAXLEN in the
source).

Options include:

-n Generate a negative image (1 = white, 0 = black).

-x xmin xmax

Specify the range of the x-coordinates (default: xmin=0, xmax=nrows-1).

-y ymin ymax

Specify the range of the y-coordinates (default: ymin=0, ymax=ncols-1).

The output of imageplt is text in three columns, to be plotted using the -pc option of plt, as in:

imageplt -d 10 10 foo | plt 0 1 2 -pc

SEE ALSO
plt(1), pltf(1)

AV AILABILITY
imageplt is available as part of the plt package in PhysioToolkit (see SOURCES below) under the GPL.

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/plt/plt/misc/imageplt.c

plt 2.3 19 December 2002 37

LOG10(1) WFDB Applications Guide LOG10(1)

NAME
log10 − calculate common logarithms of two-column data

SYNOPSIS
log10

DESCRIPTION
log10 reads its standard input, which should be in text form and should contain two positive numbers (x and
y) on each line, separated by spaces or tabs. The standard output of log10 contains four columns of num-
bers, separated by spaces: the common (base 10) logarithms of x and y, and the x and y values. To avoid
underflow, if any input is less than MINDOUBLE (defined in <values.h> as the smallest positive value
that can be represented as a double-precision floating point quantity), it is replaced by that value.

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/psd/log10.c

38 30 July 2002 WFDB 10.2.7

LOMB(1) WFDB Applications Guide LOMB(1)

NAME
lomb − estimate power spectrum using the Lomb periodogram method

SYNOPSIS
lomb [options ...] input-file

DESCRIPTION
lomb transforms a real-valued time series (from the specified input-file, or from the standard input if input-

file is specified as "-"; input-file must be in text form) into a power spectrum (on the standard output), using
a technique known as the Lomb periodogram.

The input is a text file containing a sampled time series, presented as two columns of numbers (the sample
times and the sample values). The intervals between consecutive samples need not be uniform (in fact, this
is the most significant advantage of the Lomb periodogram over other methods of power spectral density
estimation). lomb writes the Lomb periodogram (the power spectral density estimate derived from the
input time series) on the standard output, in two columns (frequency and power). If the units of the sample
times in the input file are seconds, the units of the frequencies in the output are Hz.

Options are:

-h Print a usage summary.

-P Generate a power spectrum (print squared magnitudes).

-s Smooth the output.

-z Add a constant to each input sample, chosen such that the mean value of the entire series is zero.

Among many other applications, this program can be used to estimate heart rate power spectra, in combina-
tion with ihr(1). The Lomb method is ideal for analysis of any time series with missing or noisy data (the
noisy data may be removed from the time series and need not be replaced, as would be necessary if conven-
tional PSD estimation algorithms were employed).

SEE ALSO
fft(1), hrfft(1), memse(1)

Lomb, N.R. Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science

39:447-462 (1976).

Press, W.H, and Rybicki, G.B. Fast algorithm for spectral analysis of unevenly sampled data. Astrophysi-

cal J. 338:277-280 (1989).

Press, W.H. Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. Numerical Recipes in C: the Art of Scien-

tific Computing, pp. 575-584 (Cambridge Univ. Press, 1992).

Moody, G.B. Spectral analysis of heart rate without resampling. Computers in Cardiology 1993, pp.
715-718 (IEEE Computer Society Press, 1993). http://www.physionet.org/phys-
iotools/lomb/lomb.html .

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/psd/lomb.c

WFDB 10.3.8 16 June 2003 39

LWCAT(1) WFDB Applications Guide LWCAT(1)

NAME
lwcat − postprocess output of plt to make PostScript, EPS, PDF or PNG

SYNOPSIS
plt -T lw ... | lwcat [options ...]

DESCRIPTION
lwcat collects the PostScript output of plt(1) and adds a prolog and epilog to create a complete PostScript
document (or another format, if appropriate options have been selected). It is possible to concatenate the
outputs of two or more plt runs to be processed as a single job by lwcat; see the plt Tutorial and Cookbook

for details.

Output format
By default, lwcat sends its output directly to the default printer via lpr. These options may be used to mod-
ify this behavior:

-no Send the output to the printer, but don’t eject the page (use this option if you wish to overlay the
output with additional material to be produced by another program).

-ps Write PostScript to the standard output (not to the printer).

-psv Write PostScript to a temporary file and view it with gv (ghostscript).

-gv Same as -psv.

-eps Write EPSF (encapsulated PostScript format) to the standard output. Note that this is only a close
approximation to EPSF; it is acceptable to LaTeX’s epsfig package, at least.

-pdf Write PDF (portable document format) to the standard output.

-png Write PNG (portable network graphics) format to the standard output.

Window options
By default, the output appears within a 6.75x6 inch (171x152 mm) window, the lower left corner of which
is positioned 1 inch (25.4 mm) from the left edge and 3.5 inches (89 mm) from the bottom edge of the
page. The following options may be used to modify the size, location, and orientation of the output:

-landscape
Use landscape mode (rotate plot 90 degrees counterclockwise).

-sq Plot in a 6x6 inch (152x152 mm) square window, 1.25 inches (32 mm) from the left edge and 3.5
inches (89 mm) from the bottom edge of the page.

-t Plot in a 6.25x6.25 inch (159x159 mm) square window, positioned as for -sq.

-t2 Plot in a 6.25x4 inch (159x102 mm) window, positioned as for -sq.

-CinC Plot in a 4.75x3.15 inch (121x80 mm) window, positioned as for -sq.

-sq2 Plot in a 4.5x5.5 inch (114x140 mm) window, 2.5 inches (63 mm) from the left and bottom edges
of the page.

-v Plot in a 7x9.5 inch (178x241 mm) window, 0.75 inches (19 mm) from the left and bottom edges
of the page (centered on a US letter sheet).

-v2 Plot in a 7x8.5 inch (178x216 mm) window, positioned as for -v.

-va4 Plot in a 190x275 mm window, centered on an A4 sheet.

-full Plot in a 7.5x10 inch (191x254 mm) window, centered on a US letter sheet.

-slide Plot in a 7.5x5 inch (191x127 mm) window, 0.5 inches (12.7 mm) from the left edge and 3 inches
(76 mm) from the bottom edge of the page (3:2 aspect ratio, as for 35 mm slides).

-screen Plot in a 7.5x5.625 inch (191x143 mm) window, 0.5 inches (12.7 mm) from the left edge and
2.375 inches (60 mm) from the bottom edge of the page (4:3 screen aspect ratio).

40 28 October 2009 plt 2.5

LWCAT(1) WFDB Applications Guide LWCAT(1)

-golden
Plot in a 7.5x4.635 inch (191x118 mm) window, 0.5 inches (12.7 mm) from the left edge and
3.365 inches (85 mm) from the bottom edge of the page (the aspect ratio is approximately the
"golden ratio", (1+sqrt(5))/2 = 1.61803 ...).

-strip Plot in an 8x0.8 inch (203x20 mm) window.

-custom width height left-margin bottom-margin font_scale

Plot in a custom window. The -custom option reads up to 5 arguments that follow it. If one of the
5 arguments immediately following -custom begins with ’-’, it and any remaining arguments are
treated as ordinary options, and default values are used for any missing options. The units of
width, height, and margins are inches, and the font scale is a dimensionless factor with a default
value of 1 that can be used to enlarge or shrink any text in the plot. The defaults for width and left-

margin are 5 and 0 respectively, and the defaults for height and bottom-margin are the values
assigned to width and left-margin (whether explicitly or by default).

Other window options can be easily added; see the source for lwcat for details.

Copies
By default, lwcat prints a single copy. Multiple copies can be produced using the options -c2, -c3, -c4, -c5,
and -c6; when using a PostScript printer, this will almost always be much faster than rerunning lwcat,
since the document is downloaded and rasterized only once when using these options. To print more than 6
copies, repeat or combine these options as needed.

FILES
/usr/lib/ps/plt.pro

PostScript prolog

SEE ALSO
plt(1)

AV AILABILITY
lwcat is available as part of the plt package in PhysioToolkit (see SOURCE below) under the GPL.

AUTHORS
Paul Albrecht and George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/plt/src/lwcat

plt 2.5 28 October 2009 41

MEMSE(1) WFDB Applications Guide MEMSE(1)

NAME
memse − estimate power spectrum using maximum entropy (all poles) method

SYNOPSIS
memse [options ...] input-file

DESCRIPTION
memse transforms a real-valued time series (from the specified input-file, or from the standard input if
input-file is specified as ‘‘-’’; input-file must be in text form) into a power spectrum (on the standard out-
put). memse is designed to be used in much the same way as fft(1); it accepts the same input, produces
output in the same format, and accepts many of the same options used with fft.

Unlike fft, which bases its spectral estimates on the discrete Fourier transform, memse uses the maximum
entropy (all poles) method, also known as autoregressive (AR) spectral estimation. This method models the
spectrum by a series expansion in which the free parameters are all in the denominators of its terms; hence
each term may represent a pole (corresponding to infinite power spectral density within an infinitely narrow
frequency band). By contrast, Fourier analysis models the spectrum by a series expansion in which the free
parameters are all in the numerators; hence each term in a Fourier series may represent a zero. All-poles
models are particularly useful for analysis of spectra which have discrete peaks (in the terminology of opti-
cal spectra, ‘‘lines’’).

In order to use memse, you should have some idea of the order of the model you wish to use (i.e., the num-
ber of poles). Although this may be any number up to the number of input points, the number of poles gen-
erally should not exceed the square root of the number of input points, and usually should be considerably
less than that number. Large numbers of poles lead to lengthy computations (much slower than the FFT) in
which accumulated roundoff error becomes a serious problem. This problem may also occur if the length
of the input series becomes excessive. The recommended way to use memse is to begin by using fft, in
order to estimate the model order. Typically this should be a small multiple of the number of peaks which
you believe are present. Beware! memse will produce smooth spectral estimates for whatever model order
you choose -- and they may be totally bogus if you choose incorrectly. Varying the model order can help to
weed out some spurious features, but use extreme care when interpreting memse output given noisy input.

Options are:

-b low high [low high ...]
Print power in the specified bands. Each low and high pair specifies the low and high frequency
boundaries of the band of interest, in Hz. Multiple bands may be specified following a single -b
option; only the last -b option has any effect. Also see -s below.

-f frequency

Show the center frequency for each bin in the first column. The frequency argument specifies the
input sampling frequency; the center frequencies are given in the same units.

-h Print a usage summary.

-n n Produce exactly n power estimates, evenly spaced in frequency from 0 up to half the input sam-
pling frequency inclusive. The default depends on the length of the input series; it is designed to
match fft’s defaults, to make it easy to compare outputs. You may wish to use values of n which
are higher than the default in order to improve your estimates of the locations of sharp features in
the spectrum; since this is not possible using fft, this feature is one of the main advantages of
memse.

-o n Use an nth order model (i.e., up to n poles). Default: the square root of the number of input sam-
ples.

-P Generate a power spectrum (print squared magnitudes).

-s Print power in a standard set of frequency bands of interest for HRV analysis.

-w window-type

Apply the specified window to the input data. window-type may be one of: ‘Bartlett’, ‘Blackman’,
‘Blackman-Harris’, ‘Hamming’, ‘Hanning’, ‘Parzen’, ‘Square’, and ‘Welch’. The ‘Square’

42 26 February 2006 WFDB 10.4.0

MEMSE(1) WFDB Applications Guide MEMSE(1)

window type is equivalent to using no window at all; this is also variously known as a rectangular
or Dirichlet window.

-z Add a constant to each input sample, chosen such that the mean value of the entire series is zero.

-Z Set the mean value of the inputs to zero as for -z, and detrend the series (set its mean first deriva-
tive to zero). This is equivalent to subtracting a best-fit (by least squares) line from the input data.

NOTES
Versions of memse released prior to September 1999 did not support the -P option, and did not normalize
amplitudes with respect to the number of output points.

SEE ALSO
fft(1), hrfft(1), lomb(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/psd/memse.c

WFDB 10.4.0 26 February 2006 43

MFILT(1) WFDB Applications Guide MFILT(1)

NAME
mfilt − general-purpose median filter for WFDB records

SYNOPSIS
mfilt -l length [options ...]

DESCRIPTION
mfilt can be used to apply a median filter of any desired length to any desired section of a database record.
The length is expressed in samples (i.e., each output sample is the median of length input samples).
Median filters can be much more effective than any type of linear filter for removing impulse noise from
signals; they are not particularly useful for removing persistent noise, however. Generally, the shortest
effective median filter is the one that should be used, to minimize the aliasing effects resulting from the
non-linear characteristics of the filter.

Options are:

-f time Filter from the specified time on the input record (default: start at the beginning of the record).

-h Print a usage summary.

-H Read the signal files in high-resolution mode (default: standard mode). These modes are identical
for ordinary records. For multifrequency records, the standard decimation of oversampled signals
to the frame rate is suppressed in high-resolution mode (rather, all other signals are resampled at
the highest sampling frequency).

-i record

Use the specified record for input (default: record 16).

-l n Use an n-point median.

-n record

Write the output signals to record.dat, using the same specifications as the input signals, and cre-
ate a header file for the specified record. This option overrides -o if both are used.

-o record

Use the specified record for output (default: record 16). If the output record header file specifies
fewer signals than are present in the input, any extra input signals are discarded.

-t time Filter until the specified time on the input record (default: go to the end of the record).

In the present implementation, the same filter is applied to each input signal. For each output sample, an
array of length input samples centered on the time of interest is sorted. (More efficient algorithms for find-
ing the median exist, especially for large odd values of length; see, for example, Numerical Recipes.) If
length is odd, the output is the middle value from the sorted array and there is no phase shift; otherwise, the
output is the average of the two middle values from the array and there is a phase shift of one-half of the
sampling interval. If necessary, the output is padded at the end to obtain equal numbers of input and output
samples.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

Example
A 3-point median filter, applied to the first 5 minutes of record 100 to produce a new record 100m:

mfilt -l 3 -i 100 -n 100m

SEE ALSO
fir(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/mfilt.c

44 25 February 2006 WFDB 10.4.0

MRGANN(1) WFDB Applications Guide MRGANN(1)

NAME
mrgann − merge annotation files

SYNOPSIS
mrgann -r record -i ann1 ann2 -o ann3 [options ...]

DESCRIPTION
mrgann reads a pair of annotation files (specified by ann1, ann2) for the specified record and writes a third
annotation file (specified by ann3) for the same record. Typical applications of mrgann include combining
annotation files that apply to different signals within a multi-signal record, and replacing a segment of an
annotation file with annotations from another file (see the examples below). mrgann cannot concatenate
annotation files from different records (e.g., segments of a multi-segment record); use wfdbcollate(1) for
this purpose. If you wish to merge annotation files in order to be able to study or resolve the differences
between them, bxb(1) (which can also merge annotation files using its -o or -O options) is almost certainly
a better choice for such an application.

By default, the output annotation file contains copies of all annotations in each of the input files (if there are
annotations with the same time and chan fields in each input file, however, only the annotation from ann1

is copied). This behavior can be modified by command-line options, which include:

-c n Map (reset) the chan fields of all annotations from ann1 to n. chan fields may contain integers
between 0 and 255 inclusive; the chan field often specifies the signal number of the signal with
which the annotation is associated. Specify -c -1 to disable chan mapping for ann1 (the default).

-C n Map (reset) the chan fields of all annotations from ann2 to n. Specify -C -1 to disable chan map-
ping for ann2 (the default).

-h Print a usage summary.

-m0 time

Discard all annotations from both input annotators, beginning at time, until the time specified in
the next -mx option, or the end of the data if no other -mx option is given.

-m1 time

Copy all annotations from ann1, and discard all annotations from ann2, beginning at time, until the
time specified in the next -mx option, or the end of the data if no other -mx option is given.

-m2 time

Copy all annotations from ann2, and discard all annotations from ann1, beginning at time, until the
time specified in the next -mx option, or the end of the data if no other -mx option is given.

-m3 time

Copy all annotations from ann1 and ann2, beginning at time, until the time specified in the next
-mx option, or the end of the data if no other -mx option is given. Annotations from ann2 that
match others from ann1 in both the time and chan fields (after any chan mapping has been
applied, see above) are discarded. This mode is the default.

-v Verbose mode (warn about simultaneous annotations with matching chan fields).

Note that options are interpreted in left-to-right order. For this reason, if you specify more than one -mx

option, as in the second example below, be sure to specify them in time order. It is also possible to use dif-
ferent chan mapping rules during different segments of the record; to do this, specify the appropriate -c or
-C option(s) before the -mx option that specifies the time when the new mapping rules are to be applied.

EXAMPLES
To merge three sets of annotations (named a0, a2, and a3, one for each of signals 0, 2, and 3 of record 999),
use the following commands:

mrgann -r 999 -a a0 a2 -o tmp -c 0 -C 2
mrgann -r 999 -a tmp a3 -o all -c -1 -C 3

Note that two passes are needed to merge three annotation files, since mrgann reads only two annotation
files at a time. The first pass yields an intermediate result (annotator tmp); annotator all is the desired out-
put. The -c -1 option in the second command above disables chan mapping for annotations in tmp, which

WFDB 10.2.7 31 July 2002 45

MRGANN(1) WFDB Applications Guide MRGANN(1)

have already been mapped as a result of the first command; this option could have been omitted, since
chan mapping is disabled by default.

To replace any annotations in a set (named old) during the interval between 5 minutes and 6 minutes from
the beginning of record xyz, with annotations from another set (named new), use the command:

mrgann -r xyz -a old new -o out -m1 0 -m2 5:0 -m1 6:0
In this command, the desired output is written to annotator out for record xyz. The -m1 0 option overrides
the default behavior and forces any new annotations that occur before the 5-minute mark to be discarded,
while existing old annotations are copied to out. Beginning at the 5-minute mark, the -m2 5:0 option
changes the rules, and the old annotations are discarded as the new ones are copied. The rules are changed
a third and final time at the 6-minute mark by the -m1 6:0 option, which instructs mrgann to copy the
remaining old annotations to out, while once again discarding any new annotations that occur during this
interval.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
bxb(1), setwfdb(1), wfdbcollate(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/mrgann.c

46 31 July 2002 WFDB 10.2.7

MXM(1) WFDB Applications Guide MXM(1)

NAME
mxm − ANSI/AAMI-standard measurement-by-measurement annotation comparator

SYNOPSIS
mxm -r record -a reference-annotator test-annotator [options ...]

DESCRIPTION
This program implements the measurement-by-measurement comparison algorithm specified in
ANSI/AAMI EC38:1998, the American National Standard for ambulatory ECGs, for evaluating heart rate
measurements. Its use is not restricted to comparisons of these particular types of measurements, however;
if other types of measurements (e.g., HRV measurements) are available, they may be compared in the same
way by mxm.

Input to this program consists of two annotation files associated with the same record. One of these is des-
ignated the reference annotation file, the other the test annotation file.

Options include:

-f time Begin the comparison at the specified time (default: 5 minutes after the beginning of the record).

-h Print a usage summary.

-l file Append a line-format report to file (see below).

-L file Same as -l file.

-m n Compare measurement type n (default: n = 0).

-s file Append a standard-format report to file (see below).

-t time Stop the comparison at the specified time (default: the end of the record if it is defined, the end of
the reference annotation file otherwise; if time is 0, the comparison ends when the end of either
annotation file is reached).

-u Calculate unnormalized RMS measurement error (see below).

mxm reads the annotation files, ignoring all annotations except for those with anntyp = MEASURE and
subtyp = n (where n is the measurement type selected using the -m option). The measurements to be com-
pared are extracted from the aux fields of these annotations, which should contain strings with the measure-
ments in scanf(3) %lf format (e.g., ‘‘85’’, ‘‘-12.4’’, ‘‘1.2e3’’). A measurement error is calculated for each
test measurement by comparing it with the reference measurement that is nearest in time. By default, mxm
reports the normalized RMS measurement error (i.e., the square root of the sum of the squares of the differ-
ences between the test and reference measurements, divided by the sum of the reference measurements). If
the -u option is given, mxm reports the unnormalized RMS measurement error (the square root of the sum
of the squares of the differences between the test and reference measurements, divided by the number of
test measurements); this may be useful if the measurement has a zero mean (or a mean value that is signifi-
cantly smaller than the mean absolute value). The mean reference measurement that mxm reports is the
mean of the reference measurements that are actually used in the comparison; since there is not necessarily
a one-to-one correspondence between test and reference measurements, some reference measurements may
not be included in the mean, and others may be included more than once.

If ‘-’ is giv en as a file argument, reports are written on the standard output. If no options are specified,
mxm writes standard reports on the standard output (equivalent to using the option -s -). The output gener-
ated by selecting -l or -L includes column headings only if a file other than ‘-’ is specified, and only if the
specified file does not already exist. In this way, mxm can be used repeatedly to build up a line-format ta-
ble for multiple records, for further processing by sumstats(1).

DIAGNOSTICS
non-standard comparison selected

The -f, -t, and -u options modify the comparison in ways not permitted by the draft standard.

reference measurements have zero mean

Normalized RMS measurement error cannot be determined. Try using the -u option.

WFDB 10.3.0 22 November 2002 47

MXM(1) WFDB Applications Guide MXM(1)

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
bxb(1), ecgeval(1), epicmp(1), rxr(1), setwfdb(1), sumstats(1)
Evaluating ECG Analyzers (in the WFDB Applications Guide)
American National Standard ANSI/AAMI EC38:1998, Ambulatory Electrocardiographs; available from
AAMI, 1110 N Glebe Road, Suite 220, Arlington, VA 22201 USA (http://www.aami.org/).

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/mxm.c

48 22 November 2002 WFDB 10.3.0

NGUESS(1) WFDB Applications Guide NGUESS(1)

NAME
nguess − guess the times of missing normal beats in an annotation file

SYNOPSIS
nguess -r record -a input-annotator [options ...]

DESCRIPTION
This program copies its input (a WFDB annotation file containing beat annotations), removing annotations
of events other than sinus beats, and interpolating additional Q (unknown beat) annotations at times when
sinus beats are expected. Intervals between sinus beats are predicted using a predictor array as described by
Paul Schluter ("The design and evaluation of a bedside cardiac arrhythmia monitor"; Ph.D. thesis, MIT
Dept. of Electrical Engineering, 1981). When the predictions are inconsistent with the known sinus beats,
as may occur in extreme noise or in highly irregular rhythms such as atrial fibrillation, no interpolations are
made.

Options for nguess include:

-f time Begin at the specified time. By default, nguess starts at the beginning of the record.

-h Print a usage summary.

-m M Insert Q annotations in the output at the inferred locations of sinus beats only when the input RR
interval exceeds M times the predicted RR interval (default: M = 1.75). M must be greater than 1;
its useful range is roughly 1.5 to 2.

-o output-annotator

Write output to the annotation file specified by output-annotator (default: nguess).

-t time Stop at the specified time.

It should be understood that, as the name of this program implies, the Q labels it generates represent, at
best, good guesses about the times at which sinus beats may be expected. Ideally, one should avoid having
to make such guesses, but some commonly-used techniques for study of heart rate variability (for example,
conventional methods for power spectral density estimation in the frequency domain) require a uniformly
sampled instantaneous heart rate signal, such as can be obtained using tach(1) to process the output of
nguess. Other techniques, such as the Lomb periodogram method implemented by lomb(1), can obtain fre-
quency spectra from time series with missing and irregularly spaced values, such as can be produced from a
beat annotation file using ihr(1) without the need to use nguess. Use nguess only when necessary and do
not expect it to perform miracles; as a rule of thumb, if the number of guesses (Q annotations) exceeds one
or two percent of the number of known sinus beats (N annotations), be exceedingly wary of the guesses and
consider using techniques such as lomb(1) that do not require the use of nguess. Also as a general rule,
nguess works best when it is guessing the locations of sinus beats obscured by noise, or those of sinus beats
that were inhibited by isolated premature ventricular beats; the underlying hypothesis of a quasi-continuous
sinus rhythm, the basis not only of nguess but also of all other algorithms for reconstructing NN interval
time series, is most suspect in the context of supraventricular ectopic beats (which may reset the SA node,
thus interrupting the sinus rhythm) and consecutive ventricular ectopic beats.

The predictor array method is based on the observation that most of the short-term variability in normal
sinus inter-beat (NN) intervals is due to respiratory sinus arrhythmia (RSA, the quasi-periodic modulation
of heart rate by respiration, which is most notable in young, healthy subjects and decreases with age).
Since respiration rate is (in humans and smaller mammals) substantially slower than heart rate, it is possible
to estimate the length of the respiratory cycle in terms of some number of NN intervals. If, for example,
heart rate is around 60 beats per minute and respiration rate is around 10 breaths per minute, one might
expect that 6 NN intervals would correspond to one breath, and that the current interval might be particu-
larly well-approximated by the sixth previous interval. Since we don’t know the ratio between heart and
respiration rate a priori, we can observe how well each of the previous PBLEN (a constant defined in
nguess.c, see below) intervals predicts the current interval on average. Thus we have PBLEN predictors
for each interval, some of which may be much better on average than others. At any time, we know which
predictor is (locally) the best, and we can use that predictor to make a best guess of the location of the next
sinus beat. In subjects with significant RSA, the best predictor may be determined by the length of the

WFDB 10.4.7 11 June 2008 49

NGUESS(1) WFDB Applications Guide NGUESS(1)

respiratory cycle; in others, the previous beat may be a better predictor. For our purposes, it really doesn’t
matter which predictor is best, only that the mean error of the best predictor is small. If the next known
sinus beat is at least 1.75 times as distant as the prediction, and if the predictions are reasonably good on
av erage, ’nguess’ asserts that a gap exists and fills it in with a Q annotation (or more than one, if the gap is
sufficiently long).

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

FILES
record.hea header file

record.input-annotator input annotation file (may contain any annotations)

record.output-annotator output annotation file (contains N and Q annotations only)

SEE ALSO
ihr(1), lomb(1), setwfdb(1), tach(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/nguess.c

50 11 June 2008 WFDB 10.4.7

NST(1) WFDB Applications Guide NST(1)

NAME
nst − noise stress test for ECG analysis programs

SYNOPSIS
nst [options ...]

DESCRIPTION
nst adds calibrated amounts of noise from a noise record to ECGs (or other signals) from a clean record,
generating an output record in WFDB format. Such output records make it possible to assess the noise tol-
erance of analysis programs.

Options include:

-a annotator

Use annotator as the reference annotator for the clean record. If the -a option is omitted, atr is
used as the reference annotator. Reference annotations are used to determine the signal size as
part of the noise level calibration, unless the -p option (see below) is used. Reference annotations
are also copied to the output record.

-F format

Write output signals in the specified format (default: 16; for a list of valid formats, see signal(5)).

-h Print a usage summary.

-i clean-record noise-record

Read ECG (or other) signals from clean-record, and noise from noise-record. nst obtains these
record names interactively if the -i option is omitted.

-o output-record

Create a record named output-record containing the input signals and added noise. nst obtains the
name of the output record interactively if the -o option is omitted. If a header, signal, or reference
annotation file for output-record already exists in the current directory, it will be overwritten.

-p protocol

Use protocol (the annotator name of an annotation file associated with the noise record) to define
how noise is to be added to the signals (see below). If the -p option is omitted, nst generates a
protocol annotation file.

-s SNR Set scale factors for noise such that the signal-to-noise ratio during noisy segments of the output
record is SNR (in dB, see below). This option is ignored if a protocol is specified using -p.

Output signal generation
If the sampling frequencies of the clean and noise records differ by 10% or more, nst resamples the noise
record (using xform(1)), producing a new noise record in the current directory. The name of the new
record is that of the original (less any suffix beginning with an underscore), with a suffix consisting of an
underscore followed by the sampling frequency of the new record. For example, if nst is asked to use AHA
DB record 1001, sampled at 250 Hz, and noise record em, sampled at 360 Hz, it first generates a new noise
record named em_250, sampled at 250 Hz. If the noise record that nst would generate exists already, nst

uses it without regenerating it. nst prints a warning if it is necessary to resample the noise record, or to sub-
stitute a previously resampled noise record.

Each ECG (or other) signal is paired and combined with a noise signal. A gain (a, a multiplicative scale
factor) to be applied to the noise samples is set independently for each clean signal. If there are fewer noise
signals than ECG signals, noise signals are paired with more than one clean signal as necessary. For exam-
ple, if there are three clean signals and two noise signals, they are paired and combined as follows:

output signal 0 = clean signal 0 + a[0] * noise signal 0 + b[0]
output signal 1 = clean signal 1 + a[1] * noise signal 1 + b[1]
output signal 2 = clean signal 2 + a[2] * noise signal 0 + b[2]

The initial values of the gains, a, and offsets, b, are zero for all signals (i.e., no noise is added). In the pro-
tocol annotation file, the time field of each NOTE annotation specifies when gains are to be changed, and
the aux field specifies new values for the gains (in scanf(3) %lf format, beginning with a[0]; values are

WFDB 10.3.0 22 November 2002 51

NST(1) WFDB Applications Guide NST(1)

separated by white space within the aux field). The offsets, b, are recalculated at these times to cancel out
step changes in signal levels when gains are changed. During the intervals between NOTE annotations in
the protocol annotation file, gains and offsets are fixed.

If no protocol annotation file is specified, nst generates one using a standard protocol (a five-minute noise-
free ‘‘learning period’’, followed by two-minute periods of noisy and noise-free signals alternately until the
end of the clean record). The gains to be applied during the noisy periods are determined in this case by
measuring the signal and noise amplitudes (see Signal-to-noise ratios, below).

Generation of the output signals ends at the time of the last NOTE annotation in the protocol annotation
file, or at the end of the clean record, whichever comes first. If the noise record ends before that time, nst
‘rewinds’ the noise record to the beginning as necessary to obtain additional noise samples.

If a non-standard protocol is needed, it is probably easiest to run nst without the -p option to obtain a stan-
dard protocol annotation file. The standard file can be converted to text by rdann(1), edited as needed
using any text editor, and converted back into annotation file format by wrann(1).

Signal-to-noise ratios
It is useful to characterize the noise level in a noise stress test in terms of the signal-to-noise ratio (SNR)
during the noisy segments. SNR is commonly expressed in decibels (dB):

SNR = 10 log (S/N)
where S is the power of the signal, and N is the power of the noise. If the -p option is omitted, nst measures
S and N, and determines gains for the noise signals such that SNR matches the level specified using the -s
option (or interactively).

The major difficulty in applying such a definition to the noise stress test is that most measurements of signal
power are not particularly meaningful when applied to the ECG. A measurement based on mean squared
amplitude, for example, will be proportional to the square of the heart rate. Such a measurement bears little
relationship to a detector’s ability to locate QRS complexes, which is typically related to the size of the
QRS complex. A less significant problem is that unweighted measurements of noise power are likely to
overestimate the importance of very low frequency noise, which is both common and (usually) not trouble-
some for detectors. In view of these issues, nst defines S as a function of the QRS amplitude, and N as a
frequency-weighted noise power measurement. The definitions of S and N have been chosen such that
SNRs given for noise stress tests will correspond roughly in terms of an intuitively defined ‘signal quality’
with SNRs such as those that may be encountered in other contexts.

To determine S, nst invokes sigamp(1) to read the reference annotation file for the ECG record and to mea-
sure the peak-to-peak amplitude of each of the first 300 normal QRS complexes (in each case, by measur-
ing the range of amplitudes during a window from 50 ms before to 50 ms after the QRS annotation). The
largest 5% and the smallest 5% of the measurements are discarded, and sigamp estimates the peak-to-peak
QRS amplitude as the mean of the remaining 90% of the measurements. nst squares this peak-to-peak
amplitude estimate and divides the result by 8 (correct for sinusoids, close enough for these purposes) to
obtain the QRS ‘‘power’’ estimate, S.

To determine N for the unscaled noise signals, sigamp divides the first 300 seconds of the noise record into
one-second chunks. For each chunk, sigamp determines the mean amplitude and the root mean squared
difference, n, between the signal and this mean amplitude. As in the calculation of S, the largest 5% and
the smallest 5% of the 300 measurements of n are discarded, and sigamp estimates the RMS noise ampli-
tude as the mean of the remaining 90% of the measurements. N is the square of this estimate; if a noise sig-
nal is scaled by a gain, a, then N is scaled by the square of a. To obtain the desired SNR given S and N, nst
solves for a in the equation:

SNR = 10 log (S/(N * a**2))

The calculations of S, N, and a are performed separately for each pair of clean and noise signals.

Noise records
Three noise records suitable for use with nst are available from http://www.physionet.org/physiobank/data-
base/nstdb/ and are also provided in the nstdb directory of the MIT-BIH Arrhythmia Database CD-ROM.
These contain noise of the types typically observed in ECG recordings. They were obtained using a Holter
recorder and standard electrodes for ambulatory ECG monitoring, on an active subject. The electrodes

52 22 November 2002 WFDB 10.3.0

NST(1) WFDB Applications Guide NST(1)

were placed on the limbs in locations chosen such that the subject’s ECG is not visible in the recorded sig-
nals. Two signals were recorded simultaneously. Record bw contains primarily baseline wander, a low-fre-
quency signal usually caused by motion of the subject or the leads. Record em contains electrode motion
artifact (usually the result of intermittent mechanical forces acting on the electrodes), with significant
amounts of baseline wander and muscle noise as well. Record ma contains primarily muscle noise (EMG),
with a spectrum that overlaps that of the ECG, but which extends to higher frequencies. Electrode motion
artifact is usually the most troublesome type of noise for ECG analyzers, since it can closely mimic charac-
teristics of the ECG. For this reason, the remaining records in the nstdb directory consist of noise from
record em mixed with clean ECGs by nst.

Although an early version of nst generated the records in the nstdb/old directory, the signal-to-noise ratios
of these records were not determined using the definitions above. (Unfortunately, they were not calculated
as stated in the readme.doc file on the first edition CD-ROM, either.) Using the definitions above, the sig-
nal-to-noise ratios (in dB) for the noisy portions of these records are as follows:

Record Signal 0 Signal 1 Record Signal 0 Signal 1

118_02 19.79 14.38 119_02 20.31 13.79
118_04 13.77 8.36 119_04 14.29 7.77
118_06 10.25 4.84 119_06 10.76 4.25
118_08 7.75 2.34 119_08 8.27 1.75
118_10 5.81 0.41 119_10 6.33 -0.19
118_12 4.23 -1.18 119_12 4.74 -1.77

Choosing ‘clean’ records
If the goal is to assess noise robustness, ‘clean’ records are best chosen from among those that can be ana-
lyzed without error (or with very low error rates). Given such a choice, any errors observed in analysis of
nst output records can be attributed to the effects of the added noise, and not to any intrinsic properties of
the signals.

Using nst output
The output records generated by nst may be analyzed in the same way as the clean records from which they
were obtained. For ECG analyzers, programs such as bxb(1), epicmp(1), mxm(1), and rxr(1) may be use-
ful for assessing the accuracy of analysis results. A series of nst output records with a range of signal-to-
noise ratios may be used to determine how analyzer performance varies as a function of SNR. The parame-
ter of greatest interest is usually the minimum value of SNR for which performance remains acceptable.

The standard protocol is designed to provide a fair yet difficult challenge to most analyzers. Segments of
noise-free signals during the test period illustrate how rapidly the analyzer recovers its ability to analyze
clean signals after having been presented with noisy signals.

Tests of multichannel analyzers should include records in which not all signals are equally noisy. Such
records can be generated by nst with appropriately constructed protocol annotation files.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
bxb(1), epicmp(1), mxm(1), rdann(1), rxr(1), setwfdb(1), sigamp(1), xform(1), wrann(1), signal(5)

Moody, G.B., Muldrow, W.K., and Mark, R.G. A noise stress test for arrhythmia detectors. Computers in

Cardiology 11:381−384 (1984).

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/nst.c

WFDB 10.3.0 22 November 2002 53

PARSESCP(1) WFDB Applications Guide PARSESCP(1)

NAME
parsescp − parse SCP-ECG, optionally save in PhysioBank-compatible format

SYNOPSIS
parsescp [options ...]

DESCRIPTION
parsescp converts SCP-ECG output produced by SpaceLabs/Burdick ECG carts into more easily usable
formats. It was written in 2000 and has been used to convert about a million ECGs collected at Boston’s
Beth Israel Deaconess Medical Center since then. parsescp can also be used to create deidentified SCP-
ECG files, although it does not perform this function by default.

Options include:

-a Anonymize: copy standard input to standard output, removing protected health information (PHI).
This option suppresses all other output.

-b Show baselines (residuals after template subtraction).

-f Force the input to be parsed even if it contains CRC errors.

-h Print a usage summary.

-l Low-pass filter (smooth) the output wav eforms.

-o record

Set the record name (default: ecg) for output files.

-s N Shift templates by N samples before adding them to the baselines.

-S N Skip parsing of SCP-ECG section N.

-t Show templates; suppress baselines (complement of -b option).

-v Verbose mode: print a very detailed analysis of the SCP-ECG input, and write record.txt (specify
record using -o).

-w Create a PhysioBank-compatible record (specify the record name using -o).

-x Show a hexadecimal data dump (implies -v).

-z Suppress final transients and zero-mean the ECGs.

Unless the -a option is used, this program produces at least these three files:

record.des
(text) description (age, sex, recording bandwidth, measurements, diagnoses)

record.ecg (binary) reconstructed ECGs (see comments in
parsescp.c, the parsescp source file, for format)

record.key
(text) patient’s name and ID (medical record number)

If invoked with the -v option, parsescp produces:

record.txt
(text) reconstructed ECGs

With -v, parsescp also writes a (very) detailed analysis of the contents of the SCP-ECG input on the stan-
dard output.

If parsescp was compiled with the WFDB library, and if it is invoked with the -w option, it also produces a
pair of PhysioBank-compatible output files:

record.dat
(binary) signal file containing 12 continuous leads

54 8 March 2014 WFDB 10.5.23

PARSESCP(1) WFDB Applications Guide PARSESCP(1)

record.hea
(text) header file describing record.dat

Supported SCP versions
This program was written using AAMI SCP-1999 (Standard communications protocol for computer-

assisted electrocardiography, 25 October 1999 draft) as a reference for SCP format. It has been tested only
with SCP records produced by SpaceLabs/Burdick ECG carts (these produce second-difference encoded
data with reference beat subtraction using a single reference beat, Huffman encoded using the SCP standard
Huffman table). Amplitude (unencoded) data and first-difference encoded data should be readable using
this program, but these formats have not been tested. Use of custom Huffman tables is recognized but not
otherwise supported. Use of multiple reference beats is recognized but not otherwise supported.

ECG signals in Spacelabs/Burdick SCP-ECG files
Spacelabs/Burdick ECG carts of the type for which this program was designed record 2 of the 3 Einthoven
leads and all 6 precordial leads simultaneously for 10 seconds, at 500 samples per second per lead, with
16-bit precision over a range of +/-32.767 mV. Thus the sampling interval is 2 ms, and the amplitude reso-
lution is 5 microvolts (5000 nanovolts) per ADC unit.

Note that although the SCP standard specifies how to record the sampling frequency and amplitude resolu-
tion in SCP-ECG files, the Spacelabs/Burdick carts don’t do this, so parsescp assumes the sampling fre-
quency and resolution above. parsescp will need modification in order to convert ECGs with other sam-
pling frequencies or resolutions correctly.

ECG signals in parsescp’s output files
This program derives the third Einthoven lead and the three augmented leads using the standard relation-
ships among the leads:

III = II - I
aVR = -(I + II)/2
aVL = II/2 - III
aVF = I/2 + III

In all of its output formats, parsescp represents the samples of each signal as a sequence of unscaled inte-
gers, exactly as they appear in the original SCP-ECG input file. Thus, in the .ecg, .txt, and .dat output files,
the unit of amplitude is equivalent to 5 microvolts (5000 nanovolts), as in the SCP input. If the recording is
shorter than 10 seconds, or if a signal is missing and cannot be reconstructed from the relationships above,
each missing sample is assigned a special value (WFDB_INVALID_SAMPLE, or -32768).

The -l and -z options modify the input values as noted above; if neither option is used, the output sample
values are numerically identical to the input sample values.

The .ecg file contains selected and rearranged segments of the signals in the commonly-used layout of
twelve 2.5 second segments arranged in groups of 4 above a continuous 10-second lead II. Each sample is
represented as a big-endian 16-bit two’s complement signed integer. The file begins with a 512-byte prolog
containing the record name and recording date and time, which are HIPAA-defined protected health infor-
mation (PHI) unless the input SCP-ECG has been deidentified. The prolog is followed by four "traces",
each representing the same 10-second interval. The first three of these traces are made by concatenating
2.5 second segments (1250 samples) of each of the 12 leads, in this order:

(I aVR V1 V4)
(II aVL V2 V5)
(III aVF V3 V6)

The fourth trace is a continuous 10-second segment (5000 samples) of lead II.

The optional .txt and .dat files contain the ECG signals only (no metadata, and no PHI). The signals
appear in the standard order:

I, II, III, aVR, aVF, aVL, V1, V2, V3, V4, V5, V6

WFDB 10.5.23 8 March 2014 55

PARSESCP(1) WFDB Applications Guide PARSESCP(1)

In the .txt file, each line begins with a sample number (0 to 4999) and is followed by a sample from each of
the 12 leads, in order. Each sample is represented as a base 10 numeral, with spaces inserted between sam-
ples so that the columns line up. Thus the sample numbers are in column 0, samples of lead I are in column
1, those of lead II are in column 2, etc.

In the .dat file, the first 24 bytes contain the first sample of each signal, in the standard order as for the .txt
file. As in the .ecg file, each sample is represented as a big-endian 16-bit two’s complement signed integer.
The next 24 bytes contain the second sample of each signal, etc.

Other output files
The .des file contains a variety of information extracted from the SCP-ECG input file, in human-readable
form. It does not contain the ECG signals themselves, or the patient’s name or medical record number.
Note that .des files made from SCP-ECG files that have not been anonymized will generally contain
HIPAA-defined PHI (protected health information) such as the recording date and the patient’s age (even if
over 90).

The .key file contains the recording date and time, the patient’s name, and the medical record number, if
recorded in the input file.

The .hea file, if generated, contains metadata (information about the corresponding .dat file) only; it does
not contain any PHI, even if the input was not anonymized. Age and sex are recorded in the .hea file if
present in the input file, except that ages of 90 and more are recorded as 90. The recording date and time
are not recorded in the .hea file.

Using parsescp to create deidentified SCP-ECG files
The SCP-ECG standard defines how to record a variety of information that includes elements defined by
HIPAA as PHI (protected health information). These include the patient’s name, medical record number,
birth day and month, recording day and month, and (if the age is over 90) birth year and age.

If invoked with the -a option, parsescp reads the input SCP-ECG file and writes an anonymized (deidenti-
fied) version of it to the standard output. For example:

parsescp -a <12345678.scp >anonymous.scp
In this case, none of the other output files are produced.

parsescp removes all of the PHI as well as names of physicians and technicians, names of hospitals or clin-
ics, and room numbers, replacing them with ’xxx’. It changes all dates to January 1, and if the age is over
90, it resets the age to 90 and the birth year to 90 years before the recording year. Finally, it recalculates the
SCP-ECG CRCs so that the output is still a valid SCP-ECG file. Note that the original input file is not
modified.

Note that parsescp does not deidentify other types of data (including its own .des and .key files); it can
only deidentify SCP-ECG files.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

Examples
parsescp -o 12345 <12345.scp

The command above converts an SCP-ECG file named 12345.scp into a set of three files (12345.des,
12345.ecg, and 12345.key), as described above. The argument following -o need not match the name of
the input file as in this example, but such a choice may reduce opportunities for confusion.

parsescp -o 12345 -w <12345.scp
Same as the first example, but this command also creates a PhysioBank-compatible record named 12345
(consisting of two files named 12345.dat and 12345.hea).

parsescp -a <12345.scp >a001.scp
The final example reads its input (12345.scp), removes all PHI, and writes the deidentified data to a new
SCP-ECG file (a001.scp).

56 8 March 2014 WFDB 10.5.23

PARSESCP(1) WFDB Applications Guide PARSESCP(1)

Note that none of these commands modify the original input file (12345.scp).

SEE ALSO
rdsamp(1), setwfdb(1), xform(1), signal(5)

AUTHOR
George B. Moody (george@mit.edu) and Edna S. Moody

SOURCE
http://www.physionet.org/physiotools/wfdb/convert/parsescp.c

WFDB 10.5.23 8 March 2014 57

PLOTxD(1) WFDB Applications Guide PLOTxD(1)

NAME
plot2d, plot3d − make 2-D or 3-D plots from text files of data, using gnuplot

SYNOPSIS
plot2d [input-file] [[xcol] ycol] [options ...]
plot3d [input-file] [[xcol ycol] zcol] [options ...]

DESCRIPTION
These UNIX shell scripts can be used to produce simple 2-D and 3-D plots using gnuplot(1) in batch (non-
interactive) mode. plot2d was designed as a quick-and-dirty replacement for plt(1) (see http://www.phys-
ionet.org/physiotools/plt/). plot2d accepts a few of the most commonly-used plt options and produces sim-
ilar plots. plot3d uses the same syntax as plot2d, but it produces simple 3-D plots (a capability not yet
offered by plt).

The input-file should contain one or more space- or tab-separated columns of data per line, with each point
on a line. Omit the input-file argument to read data from the standard input. (Note: since gnuplot cannot
read data from a pipe, plot2d and plot3d save piped input in a temporary file before invoking gnuplot.)

xcol, ycol, and zcol specify the column numbers within the input file for the x, y, and z coordinates of the
points to be plotted. The leftmost column is column 0 (this convention follows that used by plt, rather than
that used by gnuplot). Omit the xcol argument to plot2d to use row numbers as abscissas; if ycol is also
omitted, plot2d plots column 1 vs. column 0. When using plot3d, omit both xcol and ycol to generate x
and y coordinates sequentially based on row numbers; a blank line in the input resets x and increments y in
this case.

Options include:

-h Print help and exit (no plot is made).

-t title Use title as the title for the plot.

-x label Use label as the X-axis label.

-y label Use label as the Y-axis label.

-z label Use label as the Z-axis label (plot3d only).

-X xmin xmax

Plot x-coordinates between xmin and xmax only.

-Y ymin ymax

Plot y-coordinates between ymin and ymax only.

-Z zmin zmax

Plot z-coordinates between zmin and zmax only (plot3d only).

-T printer

Produce output on the specified PostScript printer (default: plot on-screen). Use -T eps to gener-
ate encapsulated PostScript on the standard output.

EXAMPLES
Create a text file with the following contents:

0 0 0
1 1 1
2 4 8
3 9 27
4 16 64

and call the file powers. Plot the first column vs. the second by:
plot2d powers 0 1 -t "Squares of small integers" -x "Integer" -y "Square"

The same file can be used to generate a number of different plots, by choosing different columns. To plot
the third column vs. the first, try:

plot2d powers 2 0 -t "Marshmallows" -x "Mass (kg)" -y "Height (m)"

58 30 July 2002 WFDB 10.2.7

PLOTxD(1) WFDB Applications Guide PLOTxD(1)

SEE ALSO
gnuplot(1), plt(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCES
http://www.physionet.org/physiotools/wfdb/psd/plot2d
http://www.physionet.org/physiotools/wfdb/psd/plot3d
gnuplot: http://www.gnuplot.info/

WFDB 10.2.7 30 July 2002 59

PLOTSTM(1) WFDB Applications Guide PLOTSTM(1)

NAME
plotstm − produce scatter plot of ST measurement errors on a PostScript device

SYNOPSIS
plotstm file

DESCRIPTION
plotstm reads a file of ST measurement errors produced by epicmp(1) using its -S, -S0, or -S1 option, and
generates a PostScript page description for a scatter plot of these data, as specified by ANSI/AAMI EC38
and ANSI/AAMI EC57. The standard output of plotstm may be printed directly on any PostScript device.

SEE ALSO
ecgeval(1), epicmp(1)
Evaluating ECG Analyzers

American National Standard ANSI/AAMI EC38:1998, Ambulatory Electrocardiographs

American National Standard ANSI/AAMI EC57:1998, Testing and Reporting Performance Results of Car-

diac Rhythm and ST Segment Measurement Algorithms

The last two publications are available from AAMI, 1110 N Glebe Road, Suite 220, Arlington, VA 22201
USA (http://www.aami.org/).

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/plotstm.c

60 22 November 2002 WFDB 10.3.0

PLT(1) WFDB Applications Guide PLT(1)

NAME
plt − make 2-D plots

SYNOPSIS
plt [data-spec] [data-file] [[xcol] ycol] [options ...] [-T lw | lwcat [lwcat-options]]

DESCRIPTION
This man page is intended as a supplement to the command-line help provided by plt itself (using the -h
option, see below). If you have not previously used plt, please look at the plt Tutorial and Cookbook,
which is included in the plt package (see SOURCES below).

plt is a non-interactive (command line-driven) plotting utility. plt can produce publication-quality 2D plots
in PostScript from easily-produced text or binary data files, and can also create screen plots under the X
Window System.

All data presented to plt must be organized in rows and columns. Columns are numbered beginning with
zero, and each column contains values for a variable that can be used as an abscissa (x coordinate), ordinate
(y coordinate), or (with appropriate options described below) a grey lev el, color, or other plot attributes.
Rows are numbered beginning with one, and each row contains a value for each column. Within a data-file,
values are always arranged in row-major order (all elements of row 1, followed by all elements of row 2,
etc.).

Usually, data must be in text form in order for plt to read them. Each non-empty, non-comment line (row)
in the input should contain a value for each column that will be plotted; any additional values or other extra
text at the end of a row will be ignored. Columns can be separated by any number of spaces or tabs. Com-
mas and single or double quotation marks can also be used as column separators with current versions of
plt, though not with older versions. It is not necessary to line up the values in each row. There may also be
spaces or tabs at the beginning of a line, and these will also be ignored.

If no data-file is specified, plt reads data from its standard input. The command-line arguments xcol and
ycol specify the column numbers for the abscissas and ordinates respectively. If only one column number
is specified, it is taken as ycol, and plt generates a series of abscissas automatically. If the data-file contains
no more than two columns, both xcol and ycol may be omitted.

By default, plt reads all rows of the data-file and scales the x and y axes so that all data can be plotted. An
optional data-spec, a string beginning with a colon (:), can be used to select a subset of the rows in the
data-file. For details on using a data-spec, and for information about reading binary data files using plt, see
the plt Tutorial and Cookbook.

plt recognizes a large number of options for controlling and customizing plots. To see a summary of all
options, run ‘‘plt -h’’; if this command is followed by one or more strings (which should not begin with
hyphens), plt prints one-line summaries of all options beginning with those strings only.

plt can read its options from command-line arguments, from a format file (specified using the -f option), or
from a format string (supplied on the command line, following the -F option). When using format files or
format strings, omit the hyphen (-) before each option.

Options
Following is a brief summary of plt’s options. Note that many options require arguments. plt chooses a
suitable default for most such arguments if the argument is supplied as ‘-’. See the plt Tutorial and Cook-

book for further details.

-p plot-styles

Specify style(s) for data plots. Av ailable plot-styles include ‘c’, ‘C’, ‘e+c’, ‘e-c’, ‘e:c’, ‘E+n’, ‘E-
n’, ‘E:n’, ‘f’, ‘i’, ‘l’, ‘m’, ‘n’, ‘N’, ‘o’, ‘O’, ‘sc’, ‘Sn’, and ‘t’.

-s elements

Suppress elements of output. Elements that can be suppressed include ‘e’ (erasing the screen or
beginning a new page before plotting), ‘a’ (anything associated with axes), ‘x’ (anything associ-
ated with the x axis), ‘y’ (anything associated with the y axis), ‘g’ (the grid), ‘m’ (x and y axis tick
marks), ‘n’ (x and y tick mark numbers), ‘t’ (x and y axis labels and plot title), ‘l’ (user-supplied
labels), ‘p’ (data plots), and ‘f’ (‘‘figures’’ -- boxes, line segments, arrows, and legends). In

plt 2.3 19 December 2002 61

PLT(1) WFDB Applications Guide PLT(1)

addition, these elements modify the effects of any other elements that follow: ‘X’ (restrict effects
to x axis), ‘Y’ (restrict effects to y axis), and ‘A’ (apply effects to both axes); and the element ‘C’
reenables all elements.

-X xmin xmax

Set the x-axis range (see also -xa).

-Y ymin ymax

Set the y-axis range (see also -ya).

-t title Set the title for the plot (enclose title in quotes if it contains whitespace or begins with ‘(’ or ‘[’).

-T type Specify the output type, which may be xw (X11 window, the default under Unix or Linux and not
available under MS-Windows), or lw (PostScript, the default under MS-Windows).

-g grid-mode

Specify the grid style, which may be in, out (default), both, none, sym (make symmetric axes at
top and right), grid (extend major ticks across the entire plot), xgrid, ygrid, or sub (extend all
ticks across the entire plot).

-h [option-prefix ...]
Show help on options beginning with option-prefix (which should not begin with ‘-’). If option-

prefix is omitted, show help on all options.

Within the next group of options, those with upper-case names (‘-A’, ‘-B’, ...) use window coordinates

between (0,0) and (1,1); those with lower-case names (‘-a’, ‘-b’, ...) use data coordinates.

-a x0 y0 x1 y1

Draw an arrow to (x0,y0) from (x1,y1).

-A xw0 yw0 xw1 yw1

Draw an arrow to (xw0,yw0) from (xw1,yw1).

-b x0 y0 x1 y1

Draw a box with opposite corners at (x0,y0) and (x1,y1).

-B xw0 yw0 xw1 yw1

Draw a box with opposite corners at (xw0,yw0) and (xw1,yw1).

-c x0 y0 x1 y1

Connect points (x0,y0) and (x1,y1).

-C xw0 yw0 xw1 yw1

Connect points (xw0,yw0) and (xw1,yw1).

-d x0 y0 x1 y1

Draw a dark (filled) box with opposite corners at (x0,y0) and (x1,y1).

-D xw0 yw0 xw1 yw1

Draw a dark (filled) box with opposite corners at (xw0,yw0) and (xw1,yw1).

-l x y tbc label-string

Print label-string at (x,y). The tbc argument is a two-character text box coordinate that specifies
how the label is to be positioned relative to (x,y); the default (CC) centers the string at (x,y).

-L xw yw tbc label-string

As for -l, but using window coordinates (xw,yw).

-w configuration subwindow

Confine the plot to a predefined window, specified by the arguments. configuration specifies the
number of subwindows (panels), using one of ‘m’ (1), ‘b’ (2), or ‘q’ (4), and subwindow’ specifies
which panel is to be plotted (0 or 1 for ‘m’; 0, 1, or 2 for ‘b’; or 0, 1, 2, 3, or 4 for ‘q’). In each
case, subwindow 0 creates the frame of the entire plot, and the other subwindows refer to regions
where data can be plotted. Use this option with ‘-o’ or ‘-s e’ to create multi-panel plots in stages
without starting a new page or erasing the window before starting each new stage.

62 19 December 2002 plt 2.3

PLT(1) WFDB Applications Guide PLT(1)

-W xp0 yp0 xp1 yp1

Define the region of the page in which to plot. The arguments are page coordinates; the page
coordinates (0,0) and (1,1) correspond to the lower left and upper right corners of the page.

-f format-file

Read options from the specified format-file.

-fa format-file

Record the current axis parameters as options in the specified format-file (for use with a later plt
command). The previous contents of format-file, if any, will be overwritten.

-F format-string

Read options from the specified format-string.

-o Suppress all output except data plots.

-cz xfrom xincr

Generate abscissas, beginning with xfrom (default: 0) and incrementing by xincr (default: 1) at
each step.

-ex Don’t exclude points outside axis limits.

-hl x y tbc n file

Print the next n (default: 1000) lines of the specified file as a label, placing the reference point for
the first line of the label at data coordinates (x,y). The tbc argument is defined as for -l and is
applied to each line of the label. The file is opened when first used by -hl or -vl, and remains
open, so that successive -hl or -vl options referring to the same file read and print successive lines.
At most MAXLABELFILES (defined in plt.h, currently 6) files of label strings can be open at
once.

-vl x y tbc n file

As for -hl, but print the label in a vertical orientation (rotated 90 degrees counterclockwise).

-le linenumber plotnumber [text]
Define the specified linenumber in the legend (see also -lp). Line numbers in the legend begin
with 0 (the top line); plot numbers also begin with 0 (these refer to the data plots, and are used
here to determine the line style for the entry’s sample plot segment). The text is printed to the
right of the sample plot segment. To create an entry with more than one line of text, use additional
-le options with different linenumbers as necessary, omitting the plotnumber (use ‘-’) for all but
the first. If the same data are plotted more than once in a single figure to create an overlay (for
example, using symbols over line segments), an overlaid legend entry can be created using addi-
tional -le options with the same linenumber and different plotnumbers, omitting the text for all but
the first.

-lp xw0 yw0 [boxscale [seglength [opaque]]]
Define the window coordinates (xw0, yw0) of the upper left corner of the plot legend text, and
other attributes for the plot legend (key). plt determines the size of the box it draws around the
legend, but the calculated width of the box is multiplied by boxscale. The seglength option speci-
fies the length of the sample plot segments, as a fraction of the x-axis length (default: 0.05). If
opaque is ‘yes’ (default), the background of the legend is opaque white; otherwise, the background
is transparent (any previously drawn material remains visible through the legend box). Unless a
-lp option is provided, no legend is printed.

-lx [base [subticks]]
Draw a logarithmic x-axis; base is the base of the logarithms (default: 10), and subticks is either
‘yes’ or ‘no’. If the axis has a small number of major ticks, plt draws subticks by default; use the
subticks argument to change plt’s default behavior.

-ly [base [subticks]]
Draw a logarithmic y-axis.

plt 2.3 19 December 2002 63

PLT(1) WFDB Applications Guide PLT(1)

-tf file [tbc]
Load the text string array from the specified file. Each line of the file defines an element of the
string array; using plot styles c or t, these strings can be plotted in the same manner as data points.
The optional tbc specifies how the positions of the strings are to be modified when they are
printed, in the same way as for -l; by default, the strings are centered on the coordinates specified
for them.

-ts "string0 string1 ..." [tbc]
Load the text string array from the quoted argument (whitespace separates strings in the array)
rather than from a file; otherwise, this option is the same as -tf.

-fs "string0 string1 ..."
Load the font string array from the quoted argument. Using appropriate plot style (-p) options, the
strings can be used to change the font, line style (solid, dotted, dashed, etc.), or drawing color.

-x string

Set the x-axis title to string (which must be quoted if this option is used on the command line or if
string begins with ‘(’ or ‘[’).

-xa xmin xmax tick fmt tskip ycross

Specify the x-axis range (as xmin to xmax); the interval between x-axis tick marks; the format, fmt,
in which to print the numbers (e.g., ‘‘%.3f’’, ‘‘%.2e’’; any format that printf(3) can use for print-
ing floating-point numbers is acceptable); the number of ticks per labelled tick, tskip; and ycross,
the point on the y-axis that the x-axis should cross, in y-units. Any of these parameters may be
supplied as ‘‘-’’, which causes plt to choose a reasonable value based on the input data.

-xe xmin-error xmax-error

Use this option to specify the amount by which the x-axis range is allowed to exceed the range of
x-values in the input data, when plt determines the x-axis range automatically.

-xm tick-base

Make x-axis ticks be multiples of the specified tick-base.

-xo x-axis-offset

Move the x-axis down by x-axis-offset (expressed as a fraction of the y-axis length).

-xr Draw the x-axis at the top of the plot

-xt x label [tick-size]
Add an extra labelled tick at the specified x position, and label it with the specified label (which
may be any string). The optional tick-size argument specifies the length of the added tick, as a
fraction of the default length for labelled ticks (e.g., a value of 1.5 makes the added tick 50 longer
than the standard size).

-xts x [tick-size]
Force a labelled tick to appear on the x-axis at the specified x (the positions of the other labelled x-
ticks are adjusted accordingly). tick-size is defined as for -xt.

-y string

Set the y-axis title to string (see -x).

-ya ymin ymax tick fmt tskip xcross

Set up the y-axis (see -xa).

-ye ymin-error ymax-error

Set the allowable error in the y-axis range (see -xe).

-ym tick-base

Make y-axis ticks be multiples of the specified tick-base.

-yo y-axis-offset

Move the y-axis to the left by y-axis-offset (expressed as a fraction of the x-axis length).

64 19 December 2002 plt 2.3

PLT(1) WFDB Applications Guide PLT(1)

-yr Draw the y-axis at the right edge of the plot.

-yt y label [tick-size]
Add an extra labelled tick at the specified y position (see -xt).

-yts y [tick-size]
Force a labelled tick to appear on the y-axis at the specified y (see -xts).

-dev pterm option

Process option only if the value of PTERM is pterm. The -dev option may be useful in scripts
that produce screen or printed plots in different formats.

-sf name specification

Create a new font group with the specified name and set its specifications (font, point size,
color/grey lev el, line width, and line style). See the chapter titled Colors, Line Styles, and Fonts in
the plt Tutorial and Cookbook for details.

-ch height-factor width-factor

Modify the height and width of all characters printed in the plot by the specified factors.

-size fscl width height left-margin bottom-margin

Specify the size and position of the plot on the page. The width, height, left-margin, and bottom-

margin are specified in inches (1 inch = 25.4 mm). fscl is a factor applied to the point size of all
printed characters, independently of the scaling applied to the rest of the plot. This option is effec-
tive for printed plots only.

Screen and printed plots
By default, plt makes an X11 screen plot. To make a printed plot, use the option -T lw, and pipe the output
of plt to lwcat(1). Under Unix, GNU/Linux, or MacOS/X, lwcat uses the standard lpr print spooler to
send plt’s output in PostScript format to the default printer. When running with a Cygwin/bash window
under MS-Windows, or when using lwcat’s -gv option under Unix or Linux, the PostScript output is dis-
played on-screen using GhostScript (GSView under MS-Windows, or gv otherwise; these programs can
save the output in a file or send it to a printer).

EXAMPLES
Create a text file with the following contents:

0 0 0
1 1 1
2 4 8
3 9 27
4 16 64

and call the file powers. Plot the first column vs. the second by:
plt powers 0 1 -t "Squares of small integers" -x "Integer" -y "Square"

The same file can be used to generate a number of different plots, by choosing different columns. To plot
the third column vs. the first, try:

plt powers 2 0 -t "Marshmallows" -x "Mass (kg)" -y "Height (m)"

SEE ALSO
imageplt(1), lwcat(1), pltf(1)

The plt Tutorial and Cookbook (a book-length introduction to plt, included in the plt source package, and
also available at http://www.physionet.org/physiotools/plt/plt/doc/book.pdf) contains many more exam-
ples.

AV AILABILITY
plt is available as part of PhysioToolkit (see SOURCES below) under the GPL.

AUTHORS
plt was originally written by Paul Albrecht, and is currently maintained by George B. Moody
(george@mit.edu).

plt 2.3 19 December 2002 65

PLT(1) WFDB Applications Guide PLT(1)

SOURCES
http://www.physionet.org/physiotools/plt/

66 19 December 2002 plt 2.3

PLTF(1) WFDB Applications Guide PLTF(1)

NAME
pltf − make function plots

SYNOPSIS
pltf [expression [xmin [xmax [xinc]]]]

DESCRIPTION
pltf provides a simple way to use bc(1) and plt(1) to generate plots of many common functions of a single
variable. The command-line arguments are interpreted according to their position; pltf asks for values for
any missing arguments.

The first argument, expression, can be any expression valid as input to bc(1), with the additional feature that
the variable x may appear anywhere in the expression where a number would be allowed by bc. Some
examples of valid expressions are:

xˆ3+3*xˆ2+3*x+1

(x + 1)ˆ3

s(sqrt(xˆ2))

The first two of these are equivalent; note that whitespace and parentheses are allowed in expressions,
although it is necessary to enclose such expressions in double quotes (e.g., "(x + 1)*e(x)") when entering
them as command-line arguments in order to protect them from the shell. The last expression is the sine of
the square root of x squared; see bc(1) for a complete list of available special functions, or invoke pltf with
no command-line arguments to obtain a list.

The second and third arguments specify the domain of the function (the values over which x should vary),
and the fourth argument specifies the x-increment (the difference between consecutive values of x for which
the expression is to be evaluated).

pltf is a shell script that uses a helper application, ftable, to prepare input for bc -l. Inv oke ftable directly
(using the same arguments as for pltf) if you need to change the format of the plot or make a printed ver-
sion of it. See the source for pltf to see how to do this.

SEE ALSO
imageplt(1), plt(1)

AV AILABILITY
pltf is available as part of the plt package in PhysioToolkit (see SOURCES below) under the GPL.

AUTHOR
George B. Moody (george@mit.edu)

SOURCES
http://www.physionet.org/physiotools/plt/plt/misc/pltf

http://www.physionet.org/physiotools/plt/plt/misc/ftable.c

plt 2.3 17 October 2003 67

PNNLIST(1) WFDB Applications Guide PNNLIST(1)

NAME
pnnlist, pNNx − derive pNNx statistics from an annotation interval list or an annotation file

SYNOPSIS
pnnlist [options ...] pNNx -r record -a input-annotator [options ...]

DESCRIPTION
These programs derive pNNx, time domain measures of heart rate variability defined for any time interval x

as the fraction of consecutive normal sinus (NN) intervals that differ by more than x. Conventionally, such
measures have been applied to assess parasympathetic activity using x = 50 milliseconds (yielding the
widely-cited pNN50 statistic).

pnnlist
This program takes as standard input an annotation interval list, containing intervals in seconds and the
(beat and non-beat) annotations that terminate each interval; and outputs on standard output each unique
NN increment (x) in milliseconds, and the percentage of NN interval increments (pNNx) greater than x.

Options for pnnlist may include:

-h Print this usage summary.

-i inc Compute and output pNNx for x = 0, inc, 2*inc, ... milliseconds.

-p Compute and output increments as percentage of initial intervals.

-s Compute and output separate distributions of positive and negative intervals.

pNNx
This shell script invokes ann2rr(1) and pnnlist to obtain pNNx statistics using a beat annotation file as
input. The input file must be specified using the -r record and -a annotator arguments.

Options for pNNx may include any of those usable with pnnlist, as well as:

-f time Begin at the specified time. By default, pNNx starts at the beginning of the record.

-t time Stop at the specified time.

EXAMPLES
These commands are functionally identical:

ann2rr -r nsrdb/16265 -a atr -A -i s8 -w | pnnlist
pNNx -r nsrdb/16265 -a atr

Each of these commands reads the atr (reference) annotations for MIT-BIH Normal Sinus Rhythm Data-
base (nsrdb) record 16265 (downloading them directly from PhysioNet if the annotation file has not previ-
ously been downloaded into a local nsrdb directory. These commands will then print each unique NN
interval increment in milliseconds along with the percentage of intervals greater than that value. Both of
the examples above produce the same output; the first few lines are shown below:

0 89.2738
7.8125 69.4564
15.625 53.3662
23.4375 40.8539
31.25 31.4265
39.0625 24.1817
46.875 18.4763
54.6875 14.1261
62.5 10.7312
70.3125 8.06025
78.125 6.09401
85.9375 4.56975
93.75 3.47841
101.562 2.66896

.

.

68 22 February 2003 WFDB 10.3.2

PNNLIST(1) WFDB Applications Guide PNNLIST(1)

.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
ann2rr(1), setwfdb(1)

AUTHOR
Joe E. Mietus (joe at physionet dot org)

SOURCE
http://www.physionet.org/physiotools/pNNx/pNNx.src/pnnlist.c
http://www.physionet.org/physiotools/pNNx/pNNx.src/pNNx

WFDB 10.3.2 22 February 2003 69

PNWLOGIN(1) WFDB Applications Guide PNWLOGIN(1)

NAME
pnwlogin − provide direct access to PhysioNetWorks for WFDB applications

SYNOPSIS
pnwlogin

DESCRIPTION
pnwlogin is a bash shell script that collects user credentials needed to access files in PhysioNetWorks
projects, and provides them to WFDB applications. It also provides convenience functions, including vali-
dation of credentials and modification of the WFDB path (see setdb(1)) for convenient access to your pri-
vate PhysioNetWorks projects as well as any active (shared) projects to which you belong.

After prompting for your PhysioNetWorks user name and password, pnwlogin starts a shell, making the
login credentials available to any commands run within the shell. Applications that use WFDB library ver-
sion 10.5.14 or later and libcurl 7.12.0 or later can make use of these credentials automatically with no
modifications; you will not be prompted to enter them again while running within pnwlogin’s shell. Exit
from the shell by typing a control-D or exit (as for any bash shell). Your credentials are never written to
permanent storage, and pnwlogin’s in-memory copy of them is destroyed on exit.

First-time use:
You must be a member of an active project, or you must have created a private project, in order to use
pnwlogin successfully. You cannot create a PhysioNetWorks account or join a PhysioNetWorks project
using pnwlogin.

To get started, use your web browser to go to https://physionet.org/users/, click on "Create account", and
follow the instructions. The process can be completed in a minute or two. Once you have an account, you
will need to join an active project (follow the links on your PhysioNetWorks home page to visit the main
pages of projects of interest for further information), or create a private project before you will be able to
use pnwlogin.

ENVIRONMENT
PNWUSER

Your PhysioNetWorks user name (your email address).

PNWPASS
Your PhysioNetWorks password.

WFDB The database path: a list of locations (which may include names of local directories as well as
URL prefixes) where WFDB-compatible input files may be found.

AUTHOR
George B. Moody (george@mit.edu)

SOURCES
http://physionet.org/physiotools/wfdb/app/pnwlogin

70 13 August 2012 WFDB 10.5.14

PSCHART(1) WFDB Applications Guide PSCHART(1)

NAME
pschart − produce annotated ‘chart recordings’ on a PostScript device

SYNOPSIS
pschart [[options ...] script ...]

DESCRIPTION
pschart produces high-quality annotated plots of WFDB records on PostScript devices. When rendered on
a PostScript laser printer or phototypesetter, the plots closely resemble those that appear on pages 99−177
of the MIT-BIH Arrhythmia Database Directory.

pschart reads one or more script files containing newline-terminated commands. Its standard output is a
PostScript file suitable for printing directly with no further processing. By default, pschart draws ‘zero-
width’ lines; doing so typically reduces the printing time by a factor of three for a first-generation (300 dpi)
laser printer while producing visually pleasing results. If the output is destined for a high-resolution (600
dpi or more) printer or phototypesetter, howev er, be sure to use the -d option (see below), or the traces and
grid will be invisible (or nearly so).

Options:
-a ann Print annotations from annotator ann (default: ‘atr’). To suppress annotation printing, use ‘-a ""’.

-A ann As for -a, but for a second annotator. The second set of annotations is shown below the first set.

-b n Set the binding offset to n millimeters (default: 0). The inside margin is increased by n mm, and
the outside margin is decreased by the same amount.

-c string

Print ‘Copyright © string’ in the left page footer; string may include whitespace if it is quoted.
The characters ‘%d’, if included in string, are replaced by the current year. A default copyright
notice is printed if no -c option is specified. To suppress printing the copyright notice, use ‘-c ""’.

-C Produce charts in color (default: black and white).

-Ca r g b

Draw annotations (if enabled) in the specified color. The color is specified using three numerical
arguments (with values between 0 and 1 inclusive) that indicate the amounts of red, green, and
blue respectively. Examples: -Ca 0.5 0.5 1.0 produces light blue (the default obtained using -C
only); -Ca 0 0.5 0 produces a deep green color.

-Cg r g b

Draw the grid (if enabled) in the specified color. Default: red (1 0 0).

-Cl r g b

Draw labels and other non-annotation text in the specified color. Default: black (0 0 0).

-Cs r g b

Draw signals in the specified color. Default: deep blue (0 0 0.5).

-d n Set up for using a printer with a resolution of n dots per inch (default: n = 300, the typical resolu-
tion for laser printers). For a phototypesetter, n is typically 1200 or 2400. Note that n does not
have to be correct in order to get properly scaled output; the value determines the granularity of
the calculations made by pschart and the line width used by the printer, but not the scales.

-e Process even-numbered pages in a manner appropriate for two-sided printing. Even-numbered
pages are printed with reversed page headers, and with the outside margin on the left (default:
page headers are not reversed, and the inside margin is always on the left).

-E Generate EPSF format (encapsulated PostScript file format), suitable for inclusion in another Post-
Script file.

-g Print a 0.5 mV x 0.2 sec grid with 0.1 mV x 0.04 sec subticks under each strip (default: no grid).
This grid is drawn using the grid procedure in the prolog file (see ENVIRONMENT below).

-G Print a 0.5 mV x 0.2 sec grid without subticks under each strip (default: no grid). This grid is
drawn using the Grid procedure in the prolog file (see ENVIRONMENT below).

WFDB 10.4.24 28 October 2009 71

PSCHART(1) WFDB Applications Guide PSCHART(1)

-h Print a usage summary.

-H Read the signal files in high-resolution mode (default: standard mode). These modes are identical
for ordinary records. For multifrequency records, the standard decimation of oversampled signals
to the frame rate is suppressed in high-resolution mode (rather, all other signals are resampled at
the highest sampling frequency).

-i file Print the (text) contents of file instead of the title in the title area of the first page of output. The
text is printed in a monospaced font; use spaces rather than tabs in the text to align columns.

-l Label the signals in the margins next to each strip (default: no signal labels).

-L Print in landscape orientation (default: portrait orientation).

-m inside outside top bottom

Specify page margins in millimeters. Defaults: top and bottom, 25 mm; inside and outside,
25−37.5 mm (half of the difference between the page width and the default strip width). The
default strip width is the largest multiple of 25 mm that is at least 50 mm less than the page width.
Note that page headers and footers, time stamps, and signal labels are printed in the margins. Also
note that hardware-enforced, printer-specific margins are not included; the margins specified
using -m apply to the imageable area, and not necessarily to the physical page.

-M Print marker bars across the signals to show the locations of beat annotations (equivalent to -M1).

-Mbarstyle

Set marker bar and annotation format (note: no space between -M and barstyle). Legal values for
barstyle: 0 (no bars); 1 (bars across all signals); 2 (bars across attached signal, annotations at cen-
ter); 3 (bars across attached signal, annotations above bars). Default: barstyle = 0.

-n n Use n as the number of the first page (default: 1). Use ‘-n 0’ (or any neg ative value for n) to sup-
press page numbering.

-p Pack sufficiently short strips side-by-side (default: print each strip centered between the inside and
outside margins in a row by itself).

-P pagesize

Specify the size of the output pages to be printed. Legal values for pagesize are: ‘letter’ (8.5" x
11", 216 mm x 279 mm; imageable area 209 mm x 272 mm), ‘lwletter’ (8.5" x 11", 216 mm x 279
mm; imageable area 203 mm x 277 mm), ‘legal’ (8.5" x 14", 216 mm x 356 mm; imageable area
209 mm x 348 mm), ‘legal13’ (8.5" x 13", 216 x 330 mm; imageable area 209 mm x 322 mm),
‘A4’ (8.27" x 11.69", 210 mm x 297 mm; imageable area 202 mm x 289 mm), ‘A5’ (5.84" x 8.27",
148 mm x 210 mm; imageable area 140 mm x 202 mm); ‘B4’ (9.84" x 13.9", 250 mm x 353 mm;
imageable area 249 mm x 356 mm), ‘B5’ (6.93" x 9.84", 176 mm x 250 mm; imageable area 173
mm x 249 mm), or ‘widthxheight’ (where width and height are the width and height of the image-
able area in millimeters). ‘lwletter’ is the standard letter size for the Apple LaserWriter; all of the
other predefined page sizes are those used by the Sun SPARCprinter. Note that some printers may
require non-standard PostScript code to select non-standard page sizes; in such cases, it may be
necessary to customize the prolog file (see FILES). Default: letter size.

-r Print ‘‘Record xxx’’ as the first part of the title of each strip, where xxx is the record name.

-R Print a record name as part of the header on each page. If strips from two or more records are
printed on one page, the name of the last record is printed.

-s signal-list

Print only the signals named in the signal-list (one or more signal numbers or names, separated by
spaces; default: print all signals).

-S scale-mode timestamp-mode

Print scales and timestamps in the specified modes. Legal values for scale-mode: 0 (no scales); 1
(mm/unit in footers); 2 (units/tick in footers); 3 (mm/unit above strips); 4 (units/tick above strips);
5 (mm/unit within strips); 6 (units/tick within strips). Legal values for timestamp-mode: 0 (no
timestamps); 1 (elapsed times only); 2 (absolute times if defined, elapsed times otherwise).

72 28 October 2009 WFDB 10.4.24

PSCHART(1) WFDB Applications Guide PSCHART(1)

Defaults: scale-mode = 1, timestamp-mode = 2.

-t n Set the time scale to n millimeters per second (default: n = 12.5, half of the standard scale for chart
recorders).

-T title Set the page title to title (which may include whitespace if quoted). If no -T option is specified,
the page title is constructed from the date of the last recording on the page, if defined, or today’s
date otherwise. To suppress printing the page title, use ‘-T ""’.

-u Generate ‘unstructured’ PostScript as a workaround for a bug in the Adobe TranScript software
(also see ENVIRONMENT below). Default: generate structured PostScript, suitable for process-
ing by page-selection or page-reversal post-processors.

-v n Set the voltage (ordinate) scale to n millimeters per millivolt. Signals that do not have units of
millivolts (as specified in the record’s header file) are scaled proportionately, as specified by the
calibration file (see wfdbcal(5)). The default scale is 5 mm/mV, half of the standard scale for
chart recorders.

-V Verbose mode (echo each command as it is read from the script file).

-w n Set the line width for signals, grid lines, and marker bars to n mm. Default: 0 (the narrowest pos-
sible width; note that some devices may not render zero-width lines correctly).

-1 Print only the first character of each comment annotation.

Color output
If none of the -C options is used, output is in black and white. If any color option is used, output is in the
default colors (light blue annotations, red grid, black labels, deep blue signals) unless overridden by one or
more of the -Ca, -Cg, -Cl, or -Cs options. Color output can be rendered in greyscale by monochrome Post-
Script printers, although black-and-white output may look better in such cases.

Scripts:
Any argument that is not an option or an option argument is taken as the name of a script of newline-termi-
nated commands to be executed by pschart. If the script name is ‘-’, pschart reads commands from the
standard input. Options that follow a script name are not applied to the processing of that script, so it is
possible to use two or more scripts with different sets of options in a single run. Standard commands are of
the following form:

record time title

in which record is the name of the record for which a strip is to be printed, time indicates the time of the left
edge of the strip to be printed, and title is a description to be printed above the strip. Fields are separated by
spaces or tabs. If the time field contains a hyphen (‘-’), the portion that precedes the hyphen is taken as the
time of the left edge of the strip, and the portion that follows the hyphen indicates the end of the desired
segment; additional strips continuous with the first are printed if necessary. Unless the -p option is speci-
fied, strips that are less than the full width of the page are centered within the margins. The title field may
include embedded spaces or tabs, or it may be omitted. A totally empty command line specifies a page
break, i.e., it causes pschart to put the next strip at the top of a new page, even if the current page is not
full.

ENVIRONMENT
The environment variable PSCHARTPRO can be used to name an alternate prolog file (see below) for cus-
tom formats. The environment variable TRANSCRIPTBUG may be set (to any value) to generate
‘unstructured’ PostScript by default (see the -u option above). It may be necessary to set and export the
shell variables WFDB and WFDBCAL (see setwfdb(1)).

FILES
/usr/local/lib/ps/pschart.pro

default PostScript prolog file.

/usr/local/lib/ps/12lead.pro
alternative PostScript prolog file, suitable for printing standard 12-lead diagnostic ECGs (10 sec-
onds, 4 traces, with the top three traces divided into 2.5 second segments by marker bars). This
file redefines the grid drawn by the -G option (see the Grid procedure for details).

WFDB 10.4.24 28 October 2009 73

PSCHART(1) WFDB Applications Guide PSCHART(1)

BUGS
On older PostScript printers, output may be quite slow. A full page, with grids and default scales, typically
takes about 3 minutes to render on an Apple LaserWriter, or about 6 minutes on a Linotronic 1200 dpi pho-
totypesetter. Most modern printers can render pschart output at nearly full speed.

If the record you wish to plot is sampled at a very high rate relative to the printer resolution (i.e., if one
sample interval would appear on the page as much less than the distance between pixels), you may wish to
use xform(1) to decimate to a lower frequency for efficiency’s sake. In extreme cases, this may be neces-
sary to avoid running out of memory in your PostScript printer.

Specifying EPSF output using the -E option does not prevent pschart from producing multi-page output,
which is not permitted in EPSF. You should make sure that your output fits entirely onto one page (most
easily verified using the -V option) before including it in another document. Note that the bounding box
calculated by pschart covers the entire width of the page and most of its height (excluding only about half
of the top and bottom margins, so that the header and footer material is included), even if only a small por-
tion of the page contains plots. If you wish to fit such a plot into another document with a minimum of
empty space around it, you may either edit the bounding box comment in the pschart output, or specify a
page size that closely matches the size of your plot. The document in which pschart output is included can
arbitrarily rescale the plot, so that scales expressed in mm/unit cannot be relied upon.

Under MS-DOS, a bug in command.com makes it impossible to pass an empty string in the argument list
of a command, so that -a "", -c "", and -T "" do not work as described above. Type a space between the
quotation marks to avoid this bug, or use one of the UNIX shells that have been ported to MS-DOS instead
of command.com.

There are too many options. Invoke pschart with no arguments for a brief summary of options.

AV AILABILITY
This program is provided in the app directory of the WFDB Software Package. Run make in that directory
to compile and install it if it have not been installed already.

The PhysioNet ATM (http://physionet.org/cgi-bin/ATM) provides web access to pschart (select Plot wave-
forms from the Toolbox).

SEE ALSO
psfd(1), setwfdb(1), wave(1), xform(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCES
http://www.physionet.org/physiotools/wfdb/app/pschart.c
http://www.physionet.org/physiotools/wfdb/app/pschart.pro

74 28 October 2009 WFDB 10.4.24

PSFD(1) WFDB Applications Guide PSFD(1)

NAME
psfd − produce annotated ‘full-disclosure’ plots on a PostScript device

SYNOPSIS
psfd [[options ...] script ...]

DESCRIPTION
psfd produces high-quality annotated ‘full-disclosure’ plots of WFDB records on PostScript devices.
When rendered on a PostScript laser printer or phototypesetter, the plots closely resemble those that appear
on pages 2−97 of the MIT-BIH Arrhythmia Database Directory.

psfd reads one or more script files containing newline-terminated commands. Its standard output is a Post-
Script file suitable for printing directly with no further processing. By default, psfd draws ‘zero-width’
lines; doing so typically reduces the printing time by a factor of three for a first-generation (300 dpi) laser
printer while producing visually pleasing results. If the output is destined for a high-resolution (600 dpi or
more) printer or phototypesetter, howev er, be sure to use the -d option (see below), or the traces and grid
will be invisible (or nearly so).

Options:

-a ann Print annotations from annotator ann (default: ‘atr’). To suppress annotation printing, use ‘-a ""’.

-A ann As for -a, but for a second annotator. The second set of annotations is shown below the first set.

-b n Set the binding offset to n millimeters (default: 0). The inside margin is increased by n mm, and
the outside margin is decreased by the same amount.

-c string

Print ‘Copyright © string’ in the left page footer; string may include whitespace if it is quoted.
The characters ‘%d’, if included in string, are replaced by the current year. A default copyright
notice is printed if no -c option is specified. To suppress printing the copyright notice, use ‘-c ""’.

-C Produce charts in color (default: black and white).

-Ca r g b

Draw annotations (if enabled) in the specified color. The color is specified using three numerical
arguments (with values between 0 and 1 inclusive) that indicate the amounts of red, green, and
blue respectively. Examples: -Ca 0.5 0.5 1.0 produces light blue (the default obtained using -C
only); -Ca 0 0.5 0 produces a deep green color.

-Cg r g b

Draw the grid (if enabled) in the specified color. Default: red (1 0 0).

-Cl r g b

Draw labels and other non-annotation text in the specified color. Default: black (0 0 0).

-Cs r g b

Draw signals in the specified color. Default: deep blue (0 0 0.5).

-d n Set up for using a printer with a resolution of n dots per inch (default: n = 300, the typical resolu-
tion for laser printers). For a phototypesetter, n is typically 1200 or 2400. Note that n does not
have to be correct in order to get properly scaled output; the value determines the granularity of
the calculations made by psfd and the line width used by the printer, but not the scales.

-e Process even-numbered pages in a manner appropriate for two-sided printing. Even-numbered
pages are printed with reversed page headers, and with the outside margin on the left (default:
page headers are not reversed, and the inside margin is always on the left).

-E Generate EPSF format (encapsulated PostScript file format), suitable for inclusion in another Post-
Script file.

-g Print a grid with 1-second tick marks at the top of each page and below the last strip on each page
(default: no grid).

WFDB 10.4.12 7 January 2009 75

PSFD(1) WFDB Applications Guide PSFD(1)

-h Print a usage summary.

-H n Allot approximately n millimeters of vertical space on the page for each trace (default: n = 7.5).

-l Label the signals in the margins next to each strip (default: no signal labels).

-L Print in landscape orientation (default: portrait orientation).

-m inside outside top bottom

Specify page margins in millimeters. Defaults: top and bottom, 25 mm; inside and outside,
25−37.5 mm (half of the difference between the page width and the default strip width). The
default strip width is the largest multiple of 25 mm that is at least 50 mm less than the page width.
Note that page headers and footers, time stamps, and signal labels are printed in the margins. Also
note that hardware-enforced, printer-specific margins are not included; the margins specified
using -m apply to the imageable area, and not necessarily to the physical page.

-M Print marker bars across the signals to show the locations of beat annotations (equivalent to -M1).

-Mbarstyle

Set marker bar and annotation format (note: no space between -M and barstyle). Legal values for
barstyle: 0 (no bars); 1 (bars across all signals); 2 (bars across attached signal, annotations at cen-
ter); 3 (bars across attached signal, annotations above bars). Default: barstyle = 0.

-n n Use n as the number of the first page (default: 1). Use ‘-n 0’ (or any neg ative value for n) to sup-
press page numbering.

-N Print counter values after time stamps in the left margin.

-P pagesize

Specify the size of the output pages to be printed. Legal values for pagesize are: ‘letter’ (8.5" x
11", 216 mm x 279 mm; imageable area 209 mm x 272 mm), ‘lwletter’ (8.5" x 11", 216 mm x 279
mm; imageable area 203 mm x 277 mm), ‘legal’ (8.5" x 14", 216 mm x 356 mm; imageable area
209 mm x 348 mm), ‘legal13’ (8.5" x 13", 216 x 330 mm; imageable area 209 mm x 322 mm),
‘A4’ (8.27" x 11.69", 210 mm x 297 mm; imageable area 202 mm x 289 mm), ‘A5’ (5.84" x 8.27",
148 mm x 210 mm; imageable area 140 mm x 202 mm); ‘B4’ (9.84" x 13.9", 250 mm x 353 mm;
imageable area 249 mm x 356 mm), ‘B5’ (6.93" x 9.84", 176 mm x 250 mm; imageable area 173
mm x 249 mm), or ‘widthxheight’ (where width and height are the width and height of the image-
able area in millimeters). ‘lwletter’ is the standard letter size for the Apple LaserWriter; all of the
other predefined page sizes are those used by the Sun SPARCprinter. Note that some printers may
require non-standard PostScript code to select non-standard page sizes; in such cases, it may be
necessary to customize the prolog file (see FILES). Default: letter size.

-r Print a record name as part of the header on each page. If strips from two or more records are
printed on one page, the name of the last record is printed.

-R Same as -r.

-s signal-list

Print only the signals named in the signal-list (one or more signal numbers or names, separated by
spaces; default: print all signals).

-S scale-mode timestamp-mode

Print scales and timestamps in the specified modes. Legal values for scale-mode: 0 (no scales); 1
(mm/unit in footers); 2 (units/tick in footers). Legal values for timestamp-mode: 0 (no time-
stamps); 1 (elapsed times only); 2 (absolute times if defined, elapsed times otherwise). Defaults:
scale-mode = 1, timestamp-mode = 2.

-t n Set the time scale to n millimeters per second (default: n = 2.5, one-tenth of the standard scale for
chart recorders).

-T title Set the page title to title (which may include whitespace if quoted). If no -T option is specified,
the page title is constructed from the date of the last recording on the page, if defined, or today’s
date otherwise. To suppress printing the page title, use ‘-T ""’.

76 7 January 2009 WFDB 10.4.12

PSFD(1) WFDB Applications Guide PSFD(1)

-u Generate ‘unstructured’ PostScript as a workaround for a bug in the Adobe TranScript software
(also see ENVIRONMENT below). Default: generate structured PostScript, suitable for process-
ing by page-selection or page-reversal post-processors.

-v n Set the voltage (ordinate) scale to n millimeters per millivolt. Signals that do not have units of
millivolts (as specified in the record’s header file) are scaled proportionately, as specified by the
calibration file (see wfdbcal(5)). The default scale is 1 mm/mV, one-tenth of the standard scale
for chart recorders.

-V Verbose mode (echo each command as it is read from the script file).

-w n Set the line width for signals, grid lines, and marker bars to n mm. Default: 0 (the narrowest pos-
sible width; note that some devices may not render zero-width lines correctly).

-x Extend the last strip of each record up to 10% if necessary to avoid printing a short strip at the end.
(This option may be used to obtain plots like those in the MIT-BIH Arrhythmia Database Direc-

tory.)

-1 Print only the first character of each comment annotation.

Scripts:
Any argument that is not an option or an option argument is taken as the name of a script of newline-termi-
nated commands to be executed by psfd. If the script name is ‘-’, psfd reads commands from the standard
input. Options that follow a script name are not applied to the processing of that script, so it is possible to
use two or more scripts with different sets of options in a single run. Standard commands are of the follow-
ing form:

record time

in which record is the name of the record for which a ‘full disclosure’ plot is to be printed, and time indi-
cates the starting time (and, optionally, the stop time) of the plot. Anything that follows the time field in a
command is ignored. Fields are separated by spaces or tabs. If the time field contains a hyphen (‘-’), the
portion that precedes the hyphen is taken as the starting time of the plot, and the portion that follows the
hyphen indicates the stop time. A totally empty command line causes psfd to put the next plot at the top of
a new page, even if the current page is not full. pschart(1) command scripts are usable by psfd; note,
however, that the programs use different conventions for interpreting a missing stop time, and that strip
titles are not printed by psfd.

ENVIRONMENT
The environment variable PSFDPRO can be used to name an alternate prolog file (see below) for custom
formats. The environment variable TRANSCRIPTBUG may be set (to any value) to generate ‘unstruc-
tured’ PostScript by default (see the -u option above). It may be necessary to set and export the shell vari-
ables WFDB and WFDBCAL (see setwfdb(1)).

FILES
/usr/local/lib/ps/psfd.pro

default PostScript prolog file.

BUGS
On older PostScript printers, output may be quite slow. A full page, with grids and default scales, typically
takes about 3 minutes to render on an Apple LaserWriter, or about 6 minutes on a Linotronic 1200 dpi pho-
totypesetter. Most modern printers can render psfd output at nearly full speed.

For a 300 dpi printer, a typical full page of output will be about 80 Kbytes. Expect this to increase approxi-
mately linearly with the printer resolution.

The signals are decimated to obtain samples that are spaced by intervals approximating one pixel. To
obtain this result, the signals are first digitally low-pass filtered by psfd; in general, this has no significant
effect on the appearance of the plots other than a slight improvement in legibility for signals contaminated
by high-frequency noise. To get an idea of the high-frequency content of the signals, use pschart(1).

Specifying EPSF output using the -E option does not prevent psfd from producing multi-page output,
which is not permitted in EPSF. You should make sure that your output fits entirely onto one page (most
easily verified using the -V option) before including it in another document. Note that the bounding box

WFDB 10.4.12 7 January 2009 77

PSFD(1) WFDB Applications Guide PSFD(1)

calculated by psfd covers the entire width of the page and most of its height (excluding only about half of
the top and bottom margins, so that the header and footer material is included), even if only a small portion
of the page contains plots. If you wish to fit such a plot into another document with a minimum of empty
space around it, you may either edit the bounding box comment in the psfd output, or specify a page size
that closely matches the size of your plot. The document in which psfd output is included can arbitrarily
rescale the plot, so that scales expressed in mm/unit cannot be relied upon.

Under MS-DOS, a bug in command.com makes it impossible to pass an empty string in the argument list
of a command, so that -a "", -c "", and -T "" do not work as described above. Type a space between the
quotation marks to avoid this bug, or use one of the UNIX shells that have been ported to MS-DOS instead
of command.com.

There are too many options. Invoke psfd with no arguments for a brief summary of options.

SEE ALSO
pschart(1), setwfdb(1), wave(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCES
http://www.physionet.org/physiotools/wfdb/app/psfd.c
http://www.physionet.org/physiotools/wfdb/app/psfd.pro

78 7 January 2009 WFDB 10.4.12

RDANN(1) WFDB Applications Guide RDANN(1)

NAME
rdann − read a WFDB annotation file

SYNOPSIS
rdann -r record -a annotator [options ...]

DESCRIPTION
rdann reads the annotation file specified by record and annotator, and writes a text-format translation of it
on the standard output, one annotation per line. The output contains (from left to right) the time of the
annotation in hours, minutes, seconds, and milliseconds; the time of the annotation in samples; a mnemonic
for the annotation type; the annotation subtyp, chan, and num fields; and the auxiliary information string,
if any (assumed to be a null-terminated ASCII string).

Options include:

-c chan Print only those annotations with chan fields that match chan.

-e Print annotation times as elapsed times from the beginning of the record (default: rdann prints
absolute times if the absolute time of the beginning of the record is defined, and elapsed times oth-
erwise, unless the -x option has been given).

-f time Begin at the specified time. By default, rdann starts at the beginning of the record; if modifica-
tion labels are present, they are not printed unless -f 0 is given explicitly, howev er.

-h Print a usage summary.

-n num Print only those annotations with num fields that match num.

-p type [type ...]
Print annotations of the specified types only. The type arguments should be annotation mnemonics
(e.g., N) as normally printed by rdann in the third column. More than one -p option may be used
in a single command, and each -p option may have more than one type argument following it. If
type begins with ‘‘-’’, however, it must immediately follow -p (standard annotation mnemonics do
not begin with ‘‘-’’, but modification labels in an annotation file may define such mnemonics).

-s sub Print only those annotations with subtyp fields that match sub.

-t time Stop at the specified time.

-v Print column headings.

-x Use an alternate time format for output (the first three columns are the elapsed times in seconds, in
minutes, and in hours, replacing the hh:mm:ss and sample number columns in the default output).
Note that this format is incompatible with wrann.

The -f and -t options may be used to select a portion of an annotation file for printing. Their arguments are
usually given in standard time (hh:mm:ss) format; see the description of strtim in the WFDB Programmer’s

Guide, as well as the comments below, for other formats.

Annotation numbers beginning with 0 are implicitly assigned by rdann to each annotation in an annotation
file, and beat numbers beginning with 0 are assigned to each QRS annotation. If the argument of the -f
option begins with ‘a’, it is taken to be the annotation number of the first annotation to be printed; if it
begins with ‘b’, it is taken to be the beat number of the first beat annotation to be printed (any non-QRS
annotations that immediately precede this annotation are also printed). Arguments of the -t option begin-
ning with ‘a’ or ‘b’ similarly specify the annotation number or beat number following the last to be printed.
If the argument of the -t option begins with ‘#’, it is taken as the number of QRS annotations to be pro-
cessed; note that not all of those processed will necessarily be printed, if the -p option is used to select only
a subset of annotation types to be printed.

Note that the -e and -x options are mutually exclusive; if both are given, only the last one is effective.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

WFDB 10.5.3 4 June 2010 79

RDANN(1) WFDB Applications Guide RDANN(1)

Example
rdann -a atr -r 200 -f 0 -t 5:0 -p V

This command prints on the standard output all V (premature ventricular contraction) annotations in the
first five minutes of the atr (reference annotation) file for record 200.

CD-ROM Versions
The first edition of the MIT-BIH Arrhythmia Database CD-ROM, the first and second editions of the Euro-
pean ST-T Database CD-ROM, and the first edition of the MIT-BIH Polysomnographic Database CD-ROM
contain versions of rdann that use an older command syntax (still supported by the current version but not
described here). Refer to bin.doc in the CD-ROM directory that contains rdann for further information.

AV AILABILITY
This program is provided in the app directory of the WFDB Software Package. Run make in that directory
to compile and install it if it have not been installed already.

The PhysioNet ATM (http://physionet.org/cgi-bin/ATM) provides web access to rdsamp (select Show
annotations as text from the Toolbox).

SEE ALSO
rdsamp(1), setwfdb(1), wrann(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/rdann.c

80 4 June 2010 WFDB 10.5.3

RDEDFANN(1) WFDB Applications Guide RDEDFANN(1)

NAME
rdedfann − extract annotations from an EDF+ file

SYNOPSIS
rdedfann -r edffile [options ...]

DESCRIPTION
This program prints the annotations from an EDF+ file in the same format as rdann does for WFDB-com-
patible annotation files.

Options include:

-F frequency

Set the sampling frequency to frequency (in Hz).

-h Print a brief usage summary.

-v Verbose mode (print column headings).

-x Print EDF+ annotation text in ’aux’ rather than ’anntyp’ column.

Note that the annotation mnemonics in EDF+ files do not in general match those used in WFDB-compati-
ble annotation files, so that it will often be desirable to translate those that come from EDF+ files before
converting the text with wrann. For example, this command can be used to extract annotations from
foo.edf, change the EDF+ annotation type "QRS" to the WFDB type "N", and then produce a WFDB-com-
patible annotation file foo.edf.qrs:

rdedfann -r foo.edf | sed s/QRS/N/ | wrann -r foo.edf -a qrs

Recent versions of wrann copy unrecognized mnemonics into the aux field, setting the annotation type to
NOTE, so it is no longer essential to translate mnemonics as described above before processing rdedfann’s
output with wrann.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

AV AILABILITY
This program is provided in the convert directory of the WFDB Software Package. Run make in that direc-
tory to compile and install it if it has not been installed already.

SEE ALSO
edf2mit(1)

http://www.edfplus.info/spscs/edfplus.html Full specification of EDF+, by Bob Kemp and Jesus Olivan.

AUTHOR
George B. Moody (george@mit.edu)

SOURCES
http://www.physionet.org/physiotools/wfdb/convert/rdedfann.c

WFDB 10.5.23 5 March 2014 81

RDSAMP(1) WFDB Applications Guide RDSAMP(1)

NAME
rdsamp − read WFDB signal files

SYNOPSIS
rdsamp -r record [options ...]

DESCRIPTION
rdsamp reads signal files for the specified record and writes the samples as decimal numbers on the stan-
dard output. If no options are provided, rdsamp starts at the beginning of the record and prints all samples.
By default, each line of output contains the sample number and samples from each signal, beginning with
channel 0, separated by tabs.

Options include:

-c Produce output in CSV (comma-separated value) format (default: write output in tab-separated
columns).

-f time Begin at the specified time. By default, rdsamp starts at the beginning of the record.

-h Print a usage summary.

-H Read the signal files in high-resolution mode (default: standard mode). These modes are identical
for ordinary records. For multifrequency records, the standard decimation of oversampled signals
to the frame rate is suppressed in high-resolution mode (rather, all other signals are resampled at
the highest sampling frequency).

-l interval

Limit the amount of output to the specified time interval (in standard time format; default: no
limit). If both -l and -t are used, rdsamp stops at the earlier of the two limits.

-p Print times in seconds and milliseconds, and values in physical units. By default, rdsamp prints
times in sample intervals and values in A/D units.

-P Same as -p, but yields higher precision in the sample values (8 decimal places rather than 3).

A single character can be attached to either -p or -P to choose the format for the printed times in
the first column of output. The choices are:

-pd (or -Pd)
Print time of day and date if known, as [hh:mm:ss DD/MM/YYYY]. The base time and date must
appear in the header file for the record; otherwise, this format is equivalent to "e" format (below).

-pe (or -Pe)
Print the elapsed time from the beginning of the record, as hh:mm:ss.

-ph (or -Ph)
Print the elapsed time in hours.

-pm (or -Pm)
Print the elapsed time in minutes.

-ps (or -Ps)
Print the elapsed time in seconds. This is the default format when using -p or -P.

-pS (or -PS)
Print the elapsed time in sample intervals.

-s signal-list

Print only the signals named in the signal-list (one or more input signal numbers or names, sepa-
rated by spaces; default: print all signals). This option may be used to re-order or duplicate sig-
nals.

-S signal

Search for the first valid sample of the specified signal (a signal name or number) at or following
the time specified with -f (or the beginning of the record if the -f option is not present), and begin
printing at that time.

82 25 August 2010 WFDB 10.5.5

RDSAMP(1) WFDB Applications Guide RDSAMP(1)

-t time Stop at the specified time. By default, rdsamp stops at the end of the record.

-v Print column headings (signal names on the first line, units on the second). The names of some
signals are too wide to fit in the columns; such names are shortened by omitting the initial charac-
ters (since names of related signals often differ only at the end, this helps to make the columns
identifiable). Names of units are shortened when necessary by omitting the final characters, since
the initial characters are usually most important for distinguishing different units.

-X Produce output in WFDB-XML format (same as the CSV format produced using the -c option, but
wrapped within an XML header and trailer). This format is recognized and parsed automatically
by wrsamp.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

AV AILABILITY
This program is provided in the app directory of the WFDB Software Package. Run make in that directory
to compile and install it if it have not been installed already.

The PhysioNet ATM (http://physionet.org/cgi-bin/ATM) provides web access to rdsamp (select Show
samples as text from the Toolbox).

SEE ALSO
rdann(1), setwfdb(1), wrsamp(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/rdsamp.c

WFDB 10.5.5 25 August 2010 83

RXR(1) WFDB Applications Guide RXR(1)

NAME
rxr − ANSI/AAMI-standard run-by-run annotation comparator

SYNOPSIS
rxr -r record -a reference-annotator test-annotator [options ...]

DESCRIPTION
Using options -C, -L, or -S, rxr implements the run-by-run comparison algorithms described in
ANSI/AAMI EC38:1998, the American National Standard for Ambulatory ECGs, and in ANSI/AAMI
EC57:1998, the American National Standard for Testing and Reporting Performance Results of Cardiac
Rhythm and ST Segment Measurement Algorithms. rxr is the reference implementation of these algo-
rithms, and must be used to obtain the run-by-run performance statistics cited in EC38 and EC57 in order to
be in compliance with the standards (see EC38, section 5.2.14, and EC57, section 4.2).

Input to this program consists of two annotation files associated with the same record. One of these is des-
ignated the reference annotation file, the other the test annotation file (called the ‘algorithm’ annotation file
in EC38 and in EC57).

Options include:

-c file Append condensed reports to file.

-C file As for -c, but report SVE run statistics also.

-f time Begin the comparison at the specified time (default: 5 minutes after the beginning of the record).

-h Print a usage summary.

-l file Append line-format reports (EC57 Table A.7 format) to file (see below).

-L file file2

As for -l, but report SVE run statistics in file2.

-s file Append standard reports (EC38 section 5.2.14, EC57 Tables 7, 8 format) to file.

-S file As for -s, but report SVE run statistics also.

-t time Stop the comparison at the specified time (default: the end of the record if it is defined, the end of
the reference annotation file otherwise; if time is 0, the comparison ends when the end of either
annotation file is reached).

-v Verbose mode (list all discrepancies; see below).

-w time Set the match window (default: 0.15 seconds; see below).

At most one of -c, -C, -l, -L, -s, and -S can be given as an option. If ‘-’ is giv en as a file argument, reports
are written on the standard output. If no options are specified, rxr writes standard reports on the standard
output (equivalent to using the option -s -). The output generated by selecting -l or -L includes column
headings only if a file other than ‘-’ is specified, and only if the specified file does not already exist. In this
way, rxr can be used repeatedly to build up a line-format table for multiple records, for further processing
by sumstats(1).

The -v option specifies that each mismatch is described on the standard output in a format similar to:
3/5(120188-121065)

where the first number is the reference run length, the second is the test run length (each of these is between
0 and 6), and the numbers in parentheses indicate the location of the match window in sample intervals.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

BUGS
Since rxr performs multiple passes over its input files, it cannot be used at the end of a pipe.

SEE ALSO
bxb(1), ecgeval(1), epicmp(1), mxm(1), setwfdb(1), sumstats(1)

Evaluating ECG Analyzers (in the WFDB Applications Guide)

84 22 November 2002 WFDB 10.3.0

RXR(1) WFDB Applications Guide RXR(1)

Ambulatory Electrocardiographs (ANSI/AAMI EC38:1998)
Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms

(ANSI/AAMI EC57:1998)

The last two of these publications are available from AAMI, 1110 N Glebe Road, Suite 220, Arlington, VA
22201 USA (http://www.aami.org/).

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/rxr.c

WFDB 10.3.0 22 November 2002 85

SAMPFREQ(1) WFDB Applications Guide SAMPFREQ(1)

NAME
sampfreq − show sampling frequency for a record

SYNOPSIS
sampfreq [option] record

DESCRIPTION
This program shows the sampling frequency (in samples per second per signal) for the specified record. A
record may contain multiple signals sampled at different frequencies; in this case, the signals are stored in
frames each containing at least one sample of each signal, and (by default, if no option is specified)
sampfreq shows the number of frames per second. This is the number of samples per second returned for
each signal when the record is read using the WFDB library function getvec in standard (low-resolution)
mode; see rdsamp(1), for example.

If specified, the option may be one of:

-a List all signals in the record and their respective sampling frequencies.

-h Print a usage summary.

-H Show the highest frequency used for any signal in a multi-frequency record. This is the number of
samples per second returned by getvec when the record is read in high-resolution mode; see
rdsamp(1), for example.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

FILES
record.hea header file

SEE ALSO
rdsamp(1), setwfdb(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/sampfreq.c

86 2 August 2012 WFDB 10.5.14

SETWFDB(1) WFDB Applications Guide SETWFDB(1)

NAME
setwfdb, cshsetwfdb − set WFDB environment variables

SYNOPSIS
. setwfdb
source cshsetwfdb
call setwfdb

DESCRIPTION
WFDB applications search for input files by looking for them in an ordered list of locations called the
WFDB path. These locations can be given by directory names or (if the WFDB library has been installed
with NETFILES support) URLs. If the WFDB environment variable is set, its value specifies the WFDB
path; otherwise, applications use the builtin default path specified at the time the WFDB library was com-
piled. The default path (DEFWFDB, defined in the WFDB library source file wfdblib.h) includes the cur-
rent directory (‘‘.’’), the system-wide database directory installed as part of the WFDB Software Package
(usually /usr/database), and the PhysioBank data archive (http://www.physionet.org/physiobank/database).

WFDB applications that need access to the signal calibration database find it in a file located on the WFDB
path. If the WFDBCAL environment variable has been set, its value specifies the name of the calibration
file; otherwise, applications look for the default calibration file, the name of which (wfdbcal) is compiled
into the WFDB library.

Many users will not need to change the defaults, but for those who do, the scripts described here may be
helpful. Important: these programs must be customized before using them for the first time on a new
machine. Since they are text files, use any text editor to customize them.

sh, bash, and ksh users:
setwfdb sets the environment variables WFDB and WFDBCAL. It must be executed using the ‘‘.’’ as
shown above. It may be convenient to include an invocation of setwfdb in your .profile file.

csh and tcsh users:
cshsetwfdb sets WFDB and WFDBCAL similarly for the C-shell. It must be executed using ‘‘source’’ as
shown above. It may be convenient to include this command in your .cshrc file.

ENVIRONMENT
WFDB The database path: a list of directories that contain database files. An empty component is taken to

refer to the current directory. All applications built with the wfdb(3) library search for their data-
base input files in the order specified by WFDB. If WFDB is not set, searches are limited to the
builtin WFDB path (see above). Under Unix, directory names are separated by colons (:), and the
format of WFDB is that of the Bourne shell’s PATH variable (see sh(1)). Under MS-DOS, direc-
tory names are separated by semicolons (;), and the format of WFDB is that of the MS-DOS
PATH variable (colons may be used following drive specifiers within WFDB in this case). Mac-
OS does not support environment variables as such; under MacOS, the builtin WFDB path is
defined in fdblib.h as described above, and it contains a semicolon-delimited list of directories
(folders) as under MS-DOS, but with colons used as directory separators rather than backslashes
as under MS-DOS. Alternatively, whitespace can be used (under any environment) to separate
components of the WFDB path. Under any environment, if the value of WFDB begins with ‘@’,
the remainder of the string is taken as the name of an ‘‘indirect WFDB path file’’ that defines the
database path in the format described above.
This feature was introduced in WFDB library version 8.0, mainly to permit MacOS users to mod-

ify the WFDB path without recompiling the WFDB library, but it is also useful under MS-DOS to
avoid the 128-character limit on the length of environment variables. Indirect WFDB path files
can be nested up to 10 levels deep.

WFDBCAL
The name of the WFDB calibration file (see wfdbcal(5)). The usual rules for finding WFDB files
by searching the WFDB path apply to the WFDB calibration file, so the value of WFDBCAL
need not be an absolute path name. The WFDB calibration file is used by WFDB applications that
need to plot signals at standard scales, as well as by calsig(1), which can determine the baseline

WFDB 10.3.16 12 June 2005 87

SETWFDB(1) WFDB Applications Guide SETWFDB(1)

and gain of signals if calibration pulses are present and if the parameters of the calibration pulses
are described in the calibration file. If WFDBCAL is not set by the user, the WFDB library uses a
default WFDB calibration file (wfdbcal, named in wfdblib.h). If the WFDB calibration file is not
readable, programs that rely on it may not choose appropriate scales for some types of signals.

AUTHOR
George B. Moody (george@mit.edu)

SOURCES
Note that these are templates and will need to be customized before use:
http://www.physionet.org/physiotools/wfdb/app/setwfdb
http://www.physionet.org/physiotools/wfdb/app/cshsetwfdb

88 12 June 2005 WFDB 10.3.16

SIGAMP(1) WFDB Applications Guide SIGAMP(1)

NAME
sigamp − measure signal amplitudes of a WFDB record

SYNOPSIS
sigamp -r record [options ...]

DESCRIPTION
sigamp measures either baseline-corrected RMS amplitudes or (for suitably annotated ECG signals) nor-
mal QRS peak-to-peak amplitudes for all signals of the specified record. It makes up to 300 measurements
(but see -n below) for each signal and calculates trimmed means (by discarding the largest and smallest 5%
of the measurements and taking the mean of the remaining 90%).

Options include:

-a annotator

Measure QRS peak-to-peak amplitudes based on normal QRS annotations from the specified
annotator.

-d dt1 dt2

Set the measurement window relative to QRS annotations. Defaults: dt1 = 0.05 (seconds before
the annotation); dt2 = 0.05 (seconds after the annotation).

-f time Begin at the specified time in record (default: the beginning of record).

-h Print a usage summary.

-H Read the signal files in high-resolution mode (default: standard mode). These modes are identical
for ordinary records. For multifrequency records, the standard decimation of oversampled signals
to the frame rate is suppressed in high-resolution mode (rather, all other signals are resampled at
the highest sampling frequency).

-n nmax

Make up to nmax measurements on each signal (default: 300).

-p Print results in physical units (default: ADC units). -p may be followed by a single character to
specifify a time format (used with -q and -v when printing individual measurements); choices are
-pd (time of day and date if known), -pe (elapsed time in hours, minutes, and seconds), -ph
(elapsed time in hours), -pm (elapsed time in minutes), -ps (elapsed time in seconds (default)), -pS
(elapsed time in sample intervals).

-q Quick mode: print individual measurements only.

-t time Process until the specified time in record (default: the end of the record). Processing will be termi-
nated prematurely if 250 measurements are made before reaching the specified time.

-v Verbose mode: print individual measurements as well as trimmed means.

-w dtw Set RMS amplitude measurement window. Default: dtw = 1 (second).

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
calsig(1), setwfdb(1), sigavg(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/sigamp.c

WFDB 10.4.24 12 January 2006 89

SIGAVG(1) WFDB Applications Guide SIGAVG(1)

NAME
sigavg − calculate averages of annotated wav eforms

SYNOPSIS
sigavg -r record -a annotator [options ...]

DESCRIPTION
A common problem in signal processing is to determine the shape of a recurring wav eform in the presence
of noise. If the wav eform recurs periodically (for example, once per second) the signal can be divided into
segments of an appropriate length (one second in this example), and the segments can be averaged to
reduce the amplitude of any noise that is uncorrelated with the signal. Typically, noise is reduced by a fac-
tor of the square root of the number of segments included in the average. For physiologic signals, the
waveforms of interest are usually not strictly periodic, however. sigavg av erages such wav eforms by defin-
ing segments (averaging windows) relative to the locations of wav eform annotations.

sigavg requires a WFDB record containing any number of signals to be averaged, and an annotation file
containing markers (fiducial points) that define a fixed point in the averaging window for each wav eform.
By default, all QRS (beat) annotations for the specified annotator are included in an average that begins 50
ms before the annotation and ends 50 ms after the annotation. The output is in text form, with times (in
seconds, relative to the annotations) of each sample in the first column, and averages for each signal in the
remaining columns.

Options include:

-d dt1 dt2

Set the measurement window relative to QRS annotations. Negative values correspond to offsets
that precede the annotations. Defaults: dt1 = -0.05 seconds; dt2 = 0.05 seconds.

-f time Begin at the specified time in record (default: the beginning of record).

-h Print a usage summary.

-H Read multifrequency records in high resolution mode (default: use low resolution mode).

-p type [type ...]
Include annotations of the specified types only (default: include all QRS annotations).

-t time Process until the specified time in record (default: the end of the record).

-v Verbose mode: print column headings above measurements.

-z Set the baseline to zero before averaging.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
calsig(1), setwfdb(1), sigamp(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/sigavg.c

90 25 November 2002 WFDB 10.3.0

SIGNAME(1) WFDB Applications Guide SIGNAME(1)

NAME
signame − print names of signals of a WFDB record

SYNOPSIS
signame -r record [options ...]

DESCRIPTION
signame prints the names of the signals in the specified record (one per line). Using the -s option, only the
names of the signals specified by signal number are printed.

Options include:

-h Print a usage summary.

-s signal [signal ...]
Print names for the specified signal(s) only. Signals are numbered 0, 1, 2 If the specified signal
does not exist in record, signame outputs "[INVALID]".

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
signum(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/signame.c

WFDB 10.4.6 9 April 2008 91

SIGNUM(1) WFDB Applications Guide SIGNUM(1)

NAME
signum − print signal numbers of a WFDB record having specified names

SYNOPSIS
signum -r record [options ...]

DESCRIPTION
signum prints the signal numbers in the specified record (one per line) corresponding to the specified signal
names.

Options include:

-h Print a usage summary.

-s name [name ...]
Print signal numbers of signals that have the specified names. Signals are numbered 0, 1, 2 If
the specified signal does not exist in record, signame outputs "X".

If two or more signals in a record match a specified name, signum outputs the numbers of all the matching
signals on a single line.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
signame(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/signum.c

92 9 April 2008 WFDB 10.4.6

SKEWEDIT(1) WFDB Applications Guide SKEWEDIT(1)

NAME
skewedit − edit skew fields of header file(s)

SYNOPSIS
skewedit record skew0 [skew1 ... skewN]

DESCRIPTION
This program reads the header(5) file for the specified record, changes the skew fields to match the skew0,
skew1, etc. arguments, and rewrites the header file as record.hea in the current directory. skew0 is the skew
in samples for signal 0, skew1 is the skew for signal 1, etc. Skews may not be negative; any omitted skews
are taken to be zero.

Skew refers to time differences between samples having the same sample number in different signals.
Skew may arise while digitizing multitrack analog tape recordings, for example, as a result of differences in
the azimuth of the recording and playback heads of the recording equipment. It may be possible to measure
skew (for example, by applying test signals simultaneously or at known intervals to all input channels, and
then by measurement of the digitized test signals). When this is possible, skewedit can then be used to
record the skew measurements in the header file.

For example, assume that a test signal applied simultaneously to all inputs of record abc is determined to
appear on signal 0 at sample 30, on signal 1 at sample 28, on signal 2 at sample 28, and on signal 3 at sam-
ple 26. In this case, skew0 is 4 (30 - 26), skew1 and skew2 are each 2, and skew3 is 0. The command

skewedit abc 4 2 2 0
would apply the proper correction to the header file for the record. (The final ‘0’ may be omitted from the
command.)

Applications built using the WFDB library (version 9.2 or later) are able to correct for skew (the skew cor-
rection is performed by the WFDB library and is not visible to the application program). Note that skew
correction does not require rewriting the signal file(s).

If you wish to create skew-corrected signal files (for example, to use with applications built using earlier
versions of the WFDB library), use xform(1) to do so, using the header file generated by skewedit as input
to xform. Note, however, that older applications can generally be updated without source changes simply
by recompiling them and linking them with the current WFDB library.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
setwfdb(1), xform(1), header(5)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/skewedit.c

WFDB 10.2.7 31 July 2002 93

SNIP(1) WFDB Applications Guide SNIP(1)

NAME
snip − copy an excerpt of a WFDB record

SYNOPSIS
snip -i input-record -n new-record [options]

DESCRIPTION
snip copies the signal files (and, optionally, annotation files) of the specified input-record, and generates a
header file, thereby creating the specified new-record. snip is usually used to extract an excerpt of its input-

record, using the -f and -t options (see below) to specify the segment to be copied.

The program xform(1) can also perform this task, but offers additional flexibility (it can scale the signals,
resample them at a different frequency, rearrange them, select subsets of them, or reformat them); snip is
faster than xform, howev er.

Options are:

-a annotator

Copy the specified annotator as well as the signal files. Tw o or more annotator arguments, sepa-
rated by spaces, can follow -a. An annotator supplied via the standard input may be specified
using ‘-’, but only immediately after -a; in this case only, annotations are copied to the standard
output.

-f time Begin at the specified time in the input record (default: the beginning of the record).

-h Print a usage summary.

-l duration

Snip a segment of the specified duration (hh:mm:ss or snnnn; overrides -t if given).

-m Preserve segments of multi-segment input, if possible.

-O format

Write output in the specified format. See header(5) for a list of available formats (16, 80, 212, ...).
If this option is omitted, snip uses a format that best fits the ADC resolution of the samples.

-s Suppress output of info strings in the output header file.

-t time Process until the specified time in the input record (default: continue to the end of the record).

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

FILES
new-record.annotator output annotation file

new-record.dat output signal file

new-record.hea output header file

SEE ALSO
setwfdb(1), xform(1), header(5)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/snip.c

94 1 December 2013 WFDB 10.5.21

SORTANN(1) WFDB Applications Guide SORTANN(1)

NAME
sortann − rearrange annotations in canonical order

SYNOPSIS
sortann -r record -a annotator [options ...]

DESCRIPTION
Applications that use the WFDB library (version 9.7 and later versions) may write annotations in any order.
Most applications that read annotations, however, expect to find them in time order (with simultaneous
annotations ordered by their num and chan attributes).

sortann rewrites the annotation file specified by record and annotator, arranging its contents in canonical
(time, num, and chan) order. By default, WFDB applications run sortann as needed (from within wfdbquit

or oannclose). If the environment variable WFDBNOSORT has been set (to any value), sortann will not
be run automatically, and a warning message will be printed instead. In most such cases, you should run
sortann as instructed by the warning message before reading the annotation file with any other WFDB
application.

If the input contains two or more annotations with the same time, num, and chan fields, only the last one is
copied. As a special case of this policy, if the last such annotation has anntyp = 0 (NOTQRS), no annota-
tion is written at that location. Thus a program that generates input for sortann can effectively delete a pre-
viously written annotation by writing a NOTQRS annotation at the same location.

The sorted (output) annotation file is always written to the current directory. If the input annotation file is
in the current directory, sortann replaces it unless you specify a different output annotator name (using the
-o option). Note that the output annotation file is likely to be slightly shorter than the input file, since more
compact storage is usually possible when all annotations are sorted.

If the input annotations are already in the correct order, no output is written unless you have used the -o
option.

If you attempt to sort a very large annotation file, sortann may run out of memory. If this happens, use the
-f and -t options to work on the file in sections of any convenient size, one at a time, then use mrgann(1) to
concatenate the sections. Note that you must specify an output annotator name (with -o) when using the -f
or -t options (to avoid replacing the entire input file with a sorted subset of its contents).

The working memory required by sortann is approximately 10 times the size of the annotation file. Since
annotation files are rarely as large as 1 megabyte and available memory is rarely less than 10 megabytes, it
is unlikely that sortann will exhaust available memory, howev er.

Options include:

-f time Begin at the specified time. By default, sortann starts at the beginning of the record.

-h Print a usage summary.

-o output-annotator

Write output to the annotation file specified by output-annotator and (as specified using -r) record.
By default, sortann replaces the input annotation file.

-t time Stop at the specified time.

The -f and -t options may be used to select a portion of an annotation file for processing.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
mrgann(1), setwfdb(1)

AUTHOR
George B. Moody (george@mit.edu)

WFDB 10.4.12 20 January 2009 95

SORTANN(1) WFDB Applications Guide SORTANN(1)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/sortann.c

96 20 January 2009 WFDB 10.4.12

SQRS(1) WFDB Applications Guide SQRS(1)

NAME
sqrs, sqrs125 − single-channel QRS detector

SYNOPSIS
sqrs -r record [options ...]
sqrs125 -r record [options ...]

DESCRIPTION
sqrs attempts to locate QRS complexes in an ECG signal in the specified record. The detector algorithm is
based on example 10 in the WFDB Programmer’s Guide, which in turn is based on a Pascal program writ-
ten by W.A.H. Engelse and C. Zeelenberg, ‘‘A single scan algorithm for QRS-detection and feature extrac-
tion’’, Computers in Cardiology 6:37-42 (1979). sqrs does not include the feature extraction capability of
the Pascal program. The output of sqrs is an annotation file (with annotator name qrs) in which all
detected beats are labelled normal; the annotation file may also contain ‘artifact’ annotations at locations
that sqrs believes are noise-corrupted.

sqrs can process records containing any number of signals, but it uses only one signal for QRS detection
(signal 0 by default; this can be changed using the -s option, see below). sqrs is optimized for use with
adult human ECGs. For other ECGs, it may be necessary to experiment with the sampling frequency as
recorded in the input record’s header file (see header(5)) and the time constants indicated in the source file.

sqrs uses the WFDB library’s setifreq function to resample the input signal at 250 Hz if a significantly dif-
ferent sampling frequency is indicated in the header file. sqrs125 is identical to sqrs except that its filter
and time constants have been designed for 125 Hz input, so that its speed is roughly twice that of sqrs. If
the input signal has been sampled at a frequency near 125 Hz, the quality of the outputs of sqrs and
sqrs125 will be nearly identical. (Note that older versions of these programs did not resample their inputs;
rather, they warned if the sampling frequency was significantly different than the ideal frequency, and sug-
gested using xform(1) to resample the input.)

This program is provided as an example only, and is not intended for any clinical application. At the time
the algorithm was originally published, its performance was typical of state-of-the-art QRS detectors.
Recent designs, particularly those that can analyze two or more input signals, may exhibit significantly bet-
ter performance.

Options include:

-f time Begin at the specified time in record (default: the beginning of record).

-h Print a usage summary.

-H Read the signal files in high-resolution mode (default: standard mode). These modes are identical
for ordinary records. For multifrequency records, the standard decimation of oversampled signals
to the frame rate is suppressed in high-resolution mode (rather, all other signals are resampled at
the highest sampling frequency).

-m threshold

Specify the detection threshold (default: 500 units); use higher values to reduce false detections,
or lower values to reduce the number of missed beats.

-s signal

Specify the signal (number or name) to be used for QRS detection (default: 0).

-t time Process until the specified time in record (default: the end of the record).

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

EXAMPLES
To mark QRS complexes in record 100 beginning 5 minutes from the start, ending 10 minutes and 35 sec-
onds from the start, and using signal 1, use the command:

sqrs -r 100 -f 5:0 -t 10:35 -s 1
The output annotations may be read using (for example):

rdann -a qrs -r 100

WFDB 10.4.12 7 January 2009 97

SQRS(1) WFDB Applications Guide SQRS(1)

To evaluate the performance of this program, run it on the entire record, by:
sqrs -r 100

and then compare its output with the reference annotations by:
bxb -r 100 -a atr qrs

SEE ALSO
bxb(1), rdann(1), setwfdb(1), wqrs(1), xform(1)

AUTHORS
George B. Moody (george@mit.edu). This program is a fairly literal translation with minor corrections of
the Pascal original by WAH Engelse and Cees Zeelenberg.

SOURCE
http://www.physionet.org/physiotools/wfdb/app/sqrs.c
http://www.physionet.org/physiotools/wfdb/app/sqrs125.c

98 7 January 2009 WFDB 10.4.12

STEPDET(1) WFDB Applications Guide STEPDET(1)

NAME
stepdet − single-channel step change detector

SYNOPSIS
stepdet -r record [options ...]

DESCRIPTION
This program analyzes one signal of a PhysioBank-compatible record, detecting and annotating rising and
falling step changes. Typically this can be useful for finding transitions in a recorded digital stimulus or
ev ent marker signal, especially if the signal is noise-contaminated (as may occur if it has been recorded via
an analog-to-digital converter).

Options include:

-a annotator

Write annotations to the specified annotator (default: ’steps’)

-f time Begin at the specified time in record (default: the beginning of record).

-h Print a brief usage summary.

-H Read the signal files in high-resolution mode (default: standard mode). These modes are identical
for ordinary records. For multifrequency records, the standard decimation of oversampled signals
to the frame rate is suppressed in high-resolution mode (rather, all other signals are resampled at
the highest sampling frequency).

-m tup tdown

Specify thresholds for transitions from low to high (tup, default: 550) and from high to low
(tdown, default: 450).

-s signal

Specify the signal (number or name) to be used for step detection (default: 0).

-t time Process until the specified time in record (default: the end of the record).

tup is the threshold for detecting a rising step change (annotated as ’R’), and tdown is the threshold for
detecting a falling (’F’) step change. This program requires that tup > tdown. Using its -m option, set tup

to a value significantly greater than tdown to avoid false detections of transitions due to noise in the signal.
Noise spikes that still cause false detections can often be avoided by median-filtering the signal (see
mfilt(1)) before using it as input to this program.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
mfilt(1)

AUTHORS
George B. Moody (george@mit.edu).

SOURCE
http://www.physionet.org/physiotools/wfdb/app/stepdet.c

WFDB 10.5.23 6 March 2014 99

SUMANN(1) WFDB Applications Guide SUMANN(1)

NAME
sumann − summarize the contents of a WFDB annotation file

SYNOPSIS
sumann -r record -a annotator [options ...]

DESCRIPTION
sumann reads the annotation file specified by record and annotator and produces a tabular summary of its
contents, including the number of annotations of each type as well the duration and number of episodes of
each rhythm and signal quality.

Options include:

-f time Begin at the specified time.

-h Print a usage summary.

-o beat-table rhythm-table

Append summaries of beat and rhythm annotations to the specified beat-table and rhythm-table

files. The summaries for the specified record are written as a single line in CSV (comma-sepa-
rated value) format in each file. If either file does not exist, it is created, and a header line contain-
ing column names is written to it. If the -o option is omitted, a more easily readable summary is
written to the standard output instead.

-q Summarize QRS annotations only.

-t time Stop at the specified time.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
rdann(1), setwfdb(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/sumann.c

100 2 August 2012 WFDB 10.5.14

SUMSTATS(1) WFDB Applications Guide SUMSTATS(1)

NAME
sumstats − derive aggregate statistics from bxb, rxr, etc., line-format output

SYNOPSIS
sumstats file

DESCRIPTION
This program derives the aggregate statistics described in sections 3.5.2 and 3.5.3 of the American National
Standard, Testing and reporting performance results of cardiac rhythm and ST segment measurement algo-

rithms (ANSI/AAMI EC57:1998, based on the earlier AAMI ECAR:1987), and in sections 4.2.14.4.1 and
4.2.14.4.2 of the American National Standard, Ambulatory electrocardiographs (ANSI/AAMI EC38:1998).

To use this program, first generate a line-format report file using the -l or -L options of bxb(1), epicmp(1),
mxm(1), or rxr(1). This file must include column headings so that sumstats can recognize the file type.
Output is written to the standard output; it includes a copy of the input file, with aggregate statistics
appended at the end.

SEE ALSO
bxb(1), ecgeval(1), epicmp(1), mxm(1), plotstm(1), rxr(1)

Evaluating ECG Analyzers (in the WFDB Applications Guide)

American National Standard ANSI/AAMI EC38:1998, Ambulatory Electrocardiographs

Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms

(publication AAMI EC57:1998)

The last two publications are available from AAMI, 1110 N Glebe Road, Suite 220, Arlington, VA 22201
USA (http://www.aami.org/).

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/sumstats.c

WFDB 10.3.0 22 November 2002 101

TA CH(1) WFDB Applications Guide TA CH(1)

NAME
tach − heart rate tachometer

SYNOPSIS
tach -r record -a annotator [options ...]

DESCRIPTION
tach reads an annotation file (specified by the annotator and record arguments) and produces a uniformly
sampled and smoothed instantaneous heart rate signal. Smoothing is accomplished by finding the number
of fractional R-R intervals within a window (with a width of 2k output sample intervals, where k is a
smoothing constant) centered on the current output sample. By default, the output is in text form, and con-
sists of a column of numbers, which are samples of the instantaneous heart rate signal (in units of beats per
minute). Optionally, the output sample number can be printed before each output sample value. Alterna-
tively, tach can create a WFDB record containing the heart rate signal.

Studies of heart rate variability generally require special treatment of ectopic beats. Typically, ventricular
ectopic beat annotations are removed from the input annotation file and replaced by ‘phantom’ beat annota-
tions at the expected locations of sinus beats. The same procedure can be used to fill in gaps resulting from
other causes, such as momentary signal loss. It is often necessary to post-process the output of tach to
remove impulse noise in the heart rate signal introduced by the presence of non-compensated ectopic beats,
especially supraventricular ectopic beats. Note that tach performs none of these manipulations, although it
usually attempts limited outlier rejection (tach maintains an estimate of the mean absolute deviation of its
output, and replaces any output that is more than three times this amount from the previous value with the
previous value).

Options include:

-f time Begin at the specified time in record (default: the beginning of record).

-F frequency
Produce output at the specified sampling frequency (default: 2 Hz).

-h Print a usage summary.

-i rate For outlier detection, assume an initial rate of rate bpm (default: 80).

-l duration

Process the record for the specified duration, beginning at the time specified by a previous -f
option, or at the beginning of the record.

-n n Produce exactly n output samples, adjusting the output frequency so that they are evenly spaced
throughout the interval specified by previous -f and -t or -l options. This option is particularly use-
ful if the output of tach is to be used as input for a fast Fourier transform, since n can be chosen to
be a convenient power of two.

-o record

Write output to signal and header files for the specified record (which should not be the same as
the input record). This option suppresses the standard text output of tach.

-O Disable outlier rejection.

-s k Set the smoothing constant to k (default: 1; k must be positive).

-t time Process until the specified time in record (default: the end of the record).

-v Print the output sample number before each output sample value.

-V, -Vs, -Vm, -Vh
Print the output sample time in seconds (using -V or -Vs), minutes (using -Vm), or hours (using
-Vh) before each output sample value. Only one of these options can be used at a time.

Reference (‘atr’) annotation files can be used as input to tach, but files that contain manually-inserted anno-
tations are less suitable, since annotation placement is likely to be less consistent than in annotation files
generated by programs such as sqrs(1).

102 31 July 2002 WFDB 10.2.7

TA CH(1) WFDB Applications Guide TA CH(1)

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

DIAGNOSTICS
annotation buffer overflow

Use a smaller smoothing constant, a higher output frequency, or recompile tach with a larger value
for ABL.

SEE ALSO
setwfdb(1), sqrs(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/tach.c

WFDB 10.2.7 31 July 2002 103

TIME2SEC(1) WFDB Applications Guide TIME2SEC(1)

NAME
time2sec − convert WFDB standard time format into seconds

SYNOPSIS
time2sec [-r record] time

DESCRIPTION
This program converts the specified time interval, time (in WFDB standard time format), into seconds.
Enclose TIME in square brackets (e.g., [9:0:0]) to convert a time of day to the elapsed time in seconds from
the beginning of the (optionally) specified RECORD.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

FILES
record.hea header file

SEE ALSO
setwfdb(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/time2sec.c

104 9 July 2003 WFDB 10.3.8

WABP(1) WFDB Applications Guide WABP(1)

NAME
wabp − arterial blood pressure (ABP) pulse detector

SYNOPSIS
wabp -r record [options ...]

DESCRIPTION
wabp attempts to locate arterial blood pressure (ABP) pulse wav eforms in a continuous ABP signal in the
specified record. The detector algorithm is based on analysis of the first derivative of the ABP wav eform.
The output of wabp is an annotation file (with annotator name wabp) in which all detected beats are
labelled normal.

wabp can process records containing any number of signals, but it uses only one signal for ABP pulse
detection (by default, the lowest-numbered ABP, ART, or BP signal; this can be changed using the -s
option, see below). wabp is optimized for use with adult human ABPs. It has been designed and tested to
work best on signals sampled at 125 Hz. For other ABPs, it may be necessary to experiment with the sam-
pling frequency as recorded in the input record’s header file (see header(5)).

wabp optionally uses the WFDB library’s setifreq function to resample the input signal at 125 Hz.

Options include:

-d Dump the raw and pre-processed input samples in text format on the standard output, but do not
detect or annotate ABP pulses.

-f time Begin at the specified time in record (default: the beginning of record).

-h Print a brief usage summary.

-H Read the signal files in high-resolution mode (default: standard mode). These modes are identical
for ordinary records. For multifrequency records, the standard decimation of oversampled signals
to the frame rate is suppressed in high-resolution mode (rather, all other signals are resampled at
the highest sampling frequency).

-R Resample the input at 125 Hz (default: do not resample).

-s signal

Specify the signal (number or name) to be used for ABP pulse detection (default: the lowest-num-
bered ABP, ART, or BP signal).

-t time Process until the specified time in record (default: the end of the record).

-v Verbose mode: print information about the detector parameters.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

EXAMPLES
To mark ABP pulses in record slp60 of the slpdb database, beginning 5 minutes from the start, ending 10
minutes and 35 seconds from the start, and using signal 1, use the command:

wabp -r slpdb/slp60 -f 5:0 -t 10:35 -s 1
The output annotations may be read using (for example):

rdann -r slpdb/slp60 -a wabp

SEE ALSO
bxb(1), ecgpuwave(1), rdann(1), setwfdb(1), sqrs(1), wqrs(1)

Zong W, Heldt T, Moody GB, and Mark RG. An open-source algorithm to detect onset of arterial blood
pressure pulses. Computers in Cardiology 30:259−262 (2003).

AUTHORS
Wei Zong (wzong@mit.edu) and George B. Moody (george@mit.edu).

SOURCE
http://www.physionet.org/physiotools/wfdb/app/wabp.c

WFDB 10.5.10 7 November 2011 105

WAV2MIT(1) WFDB Applications Guide WAV2MIT(1)

NAME
wav2mit, mit2wav − convert between .wav and WFDB-compatible formats

SYNOPSIS
wav2mit -i file.wav [options ...]
mit2wav -o file.wav -r record [options ...]

DESCRIPTION
These programs convert files in the widely-used .wav audio file format into WFDB format files (as used in
PhysioBank) and vice versa. Most .wav files are already written in a WFDB-compatible format, although
the reverse is not true. (An embedded header is required by .wav format, and is allowed but is not usually
present in WFDB-format signal files.)

wav2mit creates a WFDB record from file.wav. If the input file is written in an MIT-compatible signal file
format, all that is required in this case is to create a suitable WFDB-format .hea header file that describes
the .wav file’s format. Some .wav files are written using variants of the format that are not readable by the
WFDB library; the current version of wav2mit does not attempt to convert such files, but warns that they
are not compatible. Options for wav2mit include:

-h Print a brief usage summary.

-r record

Create the specified record (default: use the base name of the input file as the record name).

mit2wav reads the specified WFDB-format record (header and signal files) and creates a .wav file contain-
ing the same data. Note that much of the data description contained in the WFDB-format header file cannot
be preserved in the .wav file. Options for mit2wav include:

-h Print a brief usage summary.

-n record

Create a header file for the output (.wav) signal file, so that it can be read by WFDB applications
as the specified record.

It may be possible to create analog signals by playing the .wav file through a sound card, but you should be
aw are of the following potential pitfalls:

Your sound card, and the software that comes with it, may not be able to play .wav files containing
three or more signals. If this is a problem, you will need to extract one or two signals to include in
the .wav file from your original recording (for example, using xform(1)).

Your sound card and its software may be unable to play .wav files at other than certain fixed sam-
pling frequencies (typically 11025, 22050, and 44100 Hz). If this is a problem, you will need to
resample the input at one of the frequencies supported by your sound card (for example, using
xform(1)) before converting it to .wav format using this program.

Your sound card may not be able to reproduce the frequencies present in the input. This is very

likely if you are trying to recreate physiologic signals such as ECGs (with most of the useful infor-
mation in the 0.1 to 30 Hz band) using a consumer sound card (which probably does not reproduce
frequencies below the lower limit of human hearing (around 30 Hz). One possible solution to this
problem is to create a digital signal containing a higher-frequency carrier signal, amplitude-modu-
lated by the signal of interest, and to convert this AM signal into a .wav file; on playback, an ana-
log AM demodulator would then recover the original low-frequency signal of interest. If you suc-
cessfully implement this solution, please send details to the author.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

AV AILABILITY
These programs are provided in the convert directory of the WFDB Software Package. Run make in that
directory to compile and install them if they hav e not been installed already.

106 12 February 2003 WFDB 10.3.2

WAV2MIT(1) WFDB Applications Guide WAV2MIT(1)

SEE ALSO
a2m(1), edf2mit, snip(1), xform(1), wfdb(3), header(5)

AUTHOR
George B. Moody (george@mit.edu)

SOURCES
http://www.physionet.org/physiotools/wfdb/convert/wav2mit.c
http://www.physionet.org/physiotools/wfdb/convert/mit2wav.c

WFDB 10.3.2 12 February 2003 107

WAVE(1) WFDB Applications Guide WAVE(1)

NAME
wave − wav eform analyzer, viewer, and editor

SYNOPSIS
wave -r record[+record ...] [options ...]

DESCRIPTION
wave can be used to view the specified WFDB record or records on any display controlled by an X11
server. It includes facilities for interactive annotation editing. The keyboard and mouse are used to control
the display interactively. First-time users should read the WAVE User’s Guide, available at http://phys-
ionet.org/physiotools/wug/ (or, while wave is running, choose User’s Guide from the Help panel).

If you specify more than one record, a separate wave process is started for each record. Note that all
records to be opened must be listed in a single command-line argument following -r, with + characters (not
spaces) between the record names. See ‘Running two or more WAVE processes’ below.

Use the left mouse button to make selections, and the right mouse button to open menus (indicated by trian-
gular glyphs at the right end of some buttons). See the Guide or choose Annotation Editing from the Help

panel).

Options are:

-a annotator

Open the specified annotation file for the previously specified record or records.

-dpi xx[xyy]
Calibrate wave for use with a display having a resolution of xx (by yy) dots per inch.

-f time Open the record(s) beginning at the specified time.

-g Use shades of grey only, even on a color monitor.

-H Read the signal files in high-resolution mode (default: standard mode). These modes are identical
for ordinary records. For multifrequency records, the standard decimation of oversampled signals
to the frame rate is suppressed in high-resolution mode (rather, all other signals are resampled at
the highest sampling frequency).

-m Use monochrome (usually black and white) only, even on a color or greyscale monitor. The line
styles selected by the -m option may be easier to distinguish on some greyscale monitors than the
default shades of grey.

-O Use overlay graphics for maximum speed and display quality if possible. This is the usual default
if the X server supports a PseudoColor or GrayScale visual. This option exists only to force use of
overlay graphics if a different mode has been chosen as the default.

-s signal-list

Initialize the signal list. By default, the signal list includes all available signals, in numerical
order.

-S Use the standard (shared) color palette, even if it is possible to modify the palette. Using this
option conserves color resources if you have other applications that use non-standard colors, at the
expense of some speed in redrawing the display. The -S option may be used in combination with
the -g option if desired.

-Vx Set display option x. See ‘Display Options’ below for details.

Note that wave queries the X server to determine the display capabilities and resolution; it is not necessary
to use the -g, -m, or -S options unless you wish to restrict wave’s use of the available capabilities. Use the
-dpi option to override the server’s default resolution if it is incorrect and cannot be changed otherwise (see
comments below under ‘Resources’).

The system on which wave runs (the ‘‘host’’ system) need not be the same as the system to which your key-
board, mouse and display are connected (the ‘‘local’’ system), provided only that the host and local systems
are on the same network. If you wish to run wave remotely, simply log in to the host using ssh, which nor-
mally handles display redirection automatically. If you use some other method to log in remotely, such as

108 28 October 2009 WFDB 10.4.24

WAVE(1) WFDB Applications Guide WAVE(1)

rlogin (not recommended) or telnet (not recommended), it is usually necessary to grant permission for the
host system to open windows on the local system’s display (generally, this is accomplished using xhost on
the local system; see the documentation for your X server for details), and to set the DISPLAY environ-
ment variable on the host system appropriately (if the local system runs UNIX, the value of DISPLAY
should be local-hostname:0.0 in most cases; again, consult your X server documentation).

ENVIRONMENT
wave uses many environment variables; they are listed in this section roughly in order of importance.
Many of them need not be set at all, since wave uses reasonable default values in most cases. Those that
are set must be set on the host system.

DISPLAY
The name of the X server and display you are using (see above). If you are using wave locally, or
if you are logged in via ssh, DISPLAY should be set automatically and should not need to be
changed.

WFDB The database path (see setwfdb(1)). If not set, wave can find database files only in the builtin
WFDB path. If you edit annotation files and wish to reopen them later, be sure that the current
directory (in which wave writes any edited annotation files) is the first directory in your database
path.

WFDBCAL
The WFDB calibration file (see setwfdb(1) and wfdbcal(5)). If not set, wave reads the builtin
default calibration file; if this is not accessible, wave may not scale signals other than ECGs cor-
rectly.

WAVEMENU
The name of the analysis menu file (see below); if not set, wave uses wavemenu if it exists in the
current directory, or $MENUDIR/wavemenu.def otherwise.

SHELL
The command interpreter used within the Analysis Commands window; if not set, wave uses
/bin/sh (the Bourne shell). Other shell-related variables, such as PATH, are also significant when
wave is running commands within the Analysis Commands window.

EDITOR
The name of the text editor to be used for modifying the analysis menu file and the log file. If not
set, wave uses textedit (a simple editor included with the XView toolkit).

PRINTER
The name of a printer to be used for paper output; if not set, wave uses the default printer.

PSPRINT
The command used to print PostScript data from the standard input; if not set, wave uses ‘lpr
-P$PRINTER’.

TEXTPRINT
The command used to print text from the standard input; if not set, wave uses ‘lpr
-P$PRINTER’.

ANNTAB
The name of a file that contains custom annotation definitions (see ‘Resources’, below, for details).
If not set, wave uses standard annotation definitions only.

The environment variables below are not needed unless the wave binary distribution, or XView, has been
installed in non-standard directories:

HELPPATH
The path for XView spot help; if not set, wave initializes it to /usr/lib/help. wave’s own spot help
is in $HELPDIR/wave, which is appended to the end of HELPPATH by wave.

WFDB 10.4.24 28 October 2009 109

WAVE(1) WFDB Applications Guide WAVE(1)

HELPDIR
The directory in which wave’s help directory is located; if not set, wave uses /usr/local/help.

MENUDIR
The name of the directory that contains the default analysis menu file; if not set, wave uses
/usr/local/lib.

RESDIR
The name of the directory in which system-wide default X11 resource files are kept; if not set,
wave uses /usr/lib/X11/app-defaults. XUSERFILESEARCHPATH, XAPPLRESDIR, and
XENVIRONMENT are also used, together with HOME and USER, to locate resource files (see
X(1)).

RESOURCES
You can control many aspects of wave’s appearance and behavior by setting its resources. If you are not
familiar with this concept, refer to an introductory book on using the X Window System, such as Darwin,
Quercia, and O’Reilly’s X User’s Guide: Open Look Edition (see the link below). Since wave is built using
the XView toolkit, all of the resources listed in xview(7) can be used with wave. In addition, the following
wave-specific resources may also be set:

Wa ve.AllowDottedLines
This resource specifies if wave is allowed to render dotted lines. wave normally draws annotation
marker bars as dotted lines, and may use dotted lines for other display elements on black-and-
white displays for clarity. Some X servers do not properly render dotted lines, however; if you
observe irregular or missing annotation marker bars, change the value of this resource from True
to False.

Wa ve.Anntab
This resource specifies the name of a file that contains a table of annotation definitions. The envi-
ronment variable ANNTAB can also be used to specify this filename; the resource overrides the
environment variable if both are set. The file contains one-line entries of the form

15 % Funny looking beat
in which the first field specifies the (numeric) annotation code in the range between 1 and
ACMAX inclusive (see /usr/include/wfdb/ecgcodes.h for a list of predefined codes and for the
definition of ACMAX); the second field (‘%’ in the example) is a mnemonic (used in annotation
display and entry), and the remainder of the entry is a description of the intended use of the anno-
tation code (which appears next to the mnemonic in the ‘Type’ field and menu of ‘Annotation
Template’ windows). Lines in the annotation table that begin with ‘#’ are treated as comments and
ignored. It is not necessary to specify an annotation table when editing an existing annotation file
unless previously undefined annotation types are to be added to it during the editing process,
although it is generally harmless to do so.

Wa ve.Dpi
This resource specifies the display resolution in dots per inch in the form MMxNN, where MM is
the horizontal resolution and NN is the vertical resolution. Normally, the resolution is known to
the X server, and it is unnecessary to specify this resource. If your X server is misinformed,
wave’s calibrated display scales will be incorrect; the best solution is to specify the resolution
using a server option such as the -dpi option supported by MIT’s X11 servers, since this will solve
problems common to any other applications that require calibrated scales as well. Not all X11
servers support such an option, so this resource is available as a work-around. The command-line
option -dpi overrides the resource if both are specified. (If you don’t know the resolution, use
xdpyinfo(1) to determine what your X server thinks it is. Then run wave, enable the grid display,
and measure the grid squares with a ruler. If they are larger than 5 mm, the number of dots per
inch returned by xdpyinfo is too large; adjust the Wa ve.Dpi resource proportionally, and repeat
the process until the grid squares measure 5 mm in each direction.)

Wa ve.GraphicsMode
This resource specifies the graphics mode used by wave; it can be overridden using the -g, -m,
-O, or -S options. The legal values are 1 (monochrome mode), 2 (overlay greyscale mode), 4

110 28 October 2009 WFDB 10.4.24

WAVE(1) WFDB Applications Guide WAVE(1)

(shared color mode), 6 (shared grey mode), and 8 (overlay color mode).

Wa ve.SignalWindow.{Grey|Color}.Element

These resources specify the colors to be used on greyscale or color displays. The ‘Color.*’
resources are used only if the display is color-capable and neither greyscale nor monochrome
mode has been specified. The defaults are:

Element Grey Color
Background white white
Grid grey75 grey90
Cursor grey50 orange red
Annotation grey25 yellow green
Signal black blue

Wa ve.SignalWindow.Mono.Background
In monochrome mode, the background is normally white, and all other display elements are nor-
mally black. The reverse can be obtained by setting this resource to black. (There is at least one
server for which this fails.)

Wa ve.Scope.{Grey|Color}.{Foreground|Background}
These resources specify the colors to be used in the Scope window on greyscale or color displays.
The Foreground color is used for the wav eform and the time display; by default, it matches the
color used for signals in the signal window (see the previous item). Some X servers do not allow
the background color of the Scope window to be set, because of the color map animation and stip-
pled erasing techniques used.

Wa ve.Scope.Mono.Background
This resource can be used to invert the foreground and background of the Scope window when
WAVE is running in monochrome mode. This does not work for all X servers.

Wa ve.SignalWindow.{Height_mm|Width_mm}
These resources specify the preferred dimensions (in millimeters) for the signal window. The
defaults are 120 and 250 respectively.

Wa ve.SignalWindow.Font
This resource specifies the font used to display annotations and time marks in the signal window.
The default is fixed.

Wa ve.TextEditor
This resource specifies the name of the text editor invoked by wave to permit you to edit wave’s
log and analysis menu files. The default is textedit (the OpenLook visual editor). You may over-
ride this resource by using the environment variable EDITOR, which is also used by many other
UNIX applications that invoke editors.

Display options
Initial values for the settings controlled from wave’s View window can be specified using either X
resources or command-line options. Once suitable settings have been selected, use the ‘Save as new
defaults’ button in wave’s View window to record them in your .Xdefaults file. In this section, the X
resource name is specified first, and the command-line option follows.

By default, all of the display options in the first group are off (False); set any of these X resources to True
to enable these options, or use the command-line options to do so.

Wa ve.View.Subtype (-Vs)
Display annotation subtyp fields.

Wa ve.View.Chan (-Vc)
Display annotation chan fields.

WFDB 10.4.24 28 October 2009 111

WAVE(1) WFDB Applications Guide WAVE(1)

Wa ve.View.Num (-Vn)
Display annotation num fields.

Wa ve.View.Aux (-Va)
Display annotation aux fields.

Wa ve.View.Markers (-Vm)
Display annotation marker bars.

Wa ve.View.SignalNames (-VN)
Display signal names along the left edge of the signal window.

Wa ve.View.Baselines (-Vb)
Display baselines for any DC-coupled signals, and label the zero levels and the units along the
right edge of the signal window.

Wa ve.View.Level (-Vl)
While the pointer is in the signal window and any mouse button is depressed, track the intersec-
tions of the marker bar with the signals and draw horizontal marker bars across the signal window
at the levels of these intersections.

The remaining resources and command-line display options correspond to the menu buttons in wave’s View
window. The value of each resource, or the numeric argument that immediately follows the command-line
option, should match the position of the desired menu choice, where the top item on each menu is in posi-
tion 0, the one below it is in position 1, etc. For example, to set the initial amplitude scale to 5 mm/mV (the
item at position 2 in the ‘Amplitude scale’ menu), add -Vv 2 to the command line, or Wa ve.View.Ampli-
tudeScale:2 to the X11 resource database.

Wa ve.View.TimeScale (-Vt)
Set the time scale:

-Vt 0 0.25 mm/hour
-Vt 1 1 mm/hour
-Vt 2 5 mm/hour
-Vt 3 0.25 mm/min
-Vt 4 1 mm/min
-Vt 5 5 mm/min
-Vt 6 25 mm/min
-Vt 7 50 mm/min
-Vt 8 125 mm/min
-Vt 9 250 mm/min
-Vt 10 500 mm/min
-Vt 11 12.5 mm/sec
-Vt 12 25 mm/sec (default)
-Vt 13 50 mm/sec
-Vt 14 125 mm/sec
-Vt 15 250 mm/sec
-Vt 16 500 mm/sec
-Vt 17 1000 mm/sec
-Vt 18 2000 mm/sec
-Vt 19 5000 mm/sec
-Vt 20 10 mm/ms
-Vt 21 20 mm/ms
-Vt 22 50 mm/ms
-Vt 23 100 mm/ms
-Vt 24 200 mm/ms
-Vt 25 500 mm/ms

112 28 October 2009 WFDB 10.4.24

WAVE(1) WFDB Applications Guide WAVE(1)

Wa ve.View.AmplitudeScale (-Vv)
Set the amplitude scale (0: 1 mm/mV; 1: 2.5 mm/mV; 2: 5 mm/mV; 3: 10 mm/mV (default); 4: 20
mm/mV; 5: 40 mm/mV; 6: 100 mm/mV).

Wa ve.View.SignalMode (-VS)
Set the choice on the ‘Draw’ menu (0: all signals (default); 1: listed signals only).

Wa ve.View.AnnotationMode (-VA)
Set the choice on the ‘Show annotations’ menu (0: centered (default); 1: attached to signals; 2: as a
signal).

Wa ve.View.TimeMode (-VT)
Set the choice on the ‘Time display’ menu (0: elapsed (default); 1: absolute; 2: in sample inter-
vals).

Wa ve.View.GridMode (-VG)
Set the choice on the ‘Grid’ menu (0: none; 1: 0.2 s; 2: 0.5 mV; 3: 0.2s x 0.5 mV (default)).

In addition to the usual ways of setting X resources, it is possible to set any of those listed above, as well as
any of the generic XView resources, by using the -xrm or -default options on the command line when
starting wave. For example, you can set the background color of the signal window using a command such
as

wave -r 100s -xrm Wav e.SignalWindow.Color.Background:lightblue

RUNNING TWO OR MORE WAVE PROCESSES
By specifying two or more record names, separated by ‘+’ characters, in the command-line argument that
follows ‘-r’ (see above), you may open separate WAVE signal windows (processes) for each record. These
processes are almost completely independent: from any signal window, you may navigate within the record,
change display settings, edit annotations, run external analysis programs, quit the process, etc., without
affecting any other signal windows.

For example, you may open two signal windows for the same record by:
wave -r 100+100 -a atr

You can now move about the record freely in either window. This facility makes it easy to compare differ-
ent segments of the record. Note that whenever two or more windows are displaying the same set of anno-
tations, as in this case, only one should be editing the annotations at any giv en time.

The window associated with the last record named on the command line has a special status: it is desig-
nated the master signal window, and an extra button (labelled ‘Sync’) appears at the top of this window.
Clicking on this button causes all of the other signal windows to be redrawn so that the times shown in their
lower left corners match that in the master signal window. (Note, however, that if you have quit a signal
window from the middle of the list, any signal windows from earlier in the list will no longer respond to
sync requests.)

By default, all command-line arguments apply to all signal windows. You may specify an argument that is
to apply to only one signal window, howev er, by prefixing the argument with ‘+n/’, where n is the signal
window number. (The first signal window, corresponding to the first record named on the command line, is
signal window number 0; the next is number 1, etc.)

This facility has many applications. For example, you may wish to open two copies of the same record,
with two different annotators:

wave -r 100+100 -a +0/atr +1/qrs
In this case, record 100 is opened in two windows, with annotator ‘atr’ in window 0 and annotator ‘qrs’ in
window 1. (The ‘-a’ option applies to both windows since it does not have a ‘+n/’ prefix.)

As another example, you may wish to discuss a record with colleagues at other locations:
wave -r 200+200+200 -a qrs +0/-display +0/atlantic.bigu.edu:0 \

+1/-display +1/pacific.widget.com:0
Here, record 200 is opened in three windows. Window 0 is opened on display 0 of atlantic.bigu.edu,

WFDB 10.4.24 28 October 2009 113

WAVE(1) WFDB Applications Guide WAVE(1)

window 1 on display 0 of pacific.widget.com, and window 2 (the master window) on the local display. (For
this to work, your colleagues must first allow your computer to open windows on their displays, typically
using xhost. See xview(7) for information about the -display option. Notice that the ‘+n/’ prefix must be
attached to both the ‘-display’ option and to its argument in order to apply both of these arguments to the
same signal window.) Your colleagues can freely move about the record, but you can direct the discussion
at any time by using the Sync button in your signal window. In a case such as this one, anyone can enable
editing; you should do so only after making sure that no one else has. Once you have sav ed your work (by
selecting ‘Save’ from the File menu), your changes become visible to your colleagues if they reload the
annotations (by clicking on ‘Reload’ from the Load window).

As a final example, the MIMIC Database includes both high-resolution wav eform records and medium-res-
olution (roughly 1 sample per second) computed measurement records. You may view both of these at the
same time using a command such as:

wave -r 237+237n -a all
Typically, you will wish to view the high-resolution and low-resolution data at different time scales.
Although wave attempts to choose reasonable defaults, you can adjust the scales independently if you wish:

wave -r 237+237n -a all +1/-Vt +1/2

If you use wavescript or wave-remote to control the master signal window (this happens by default unless
you use the -pid option of these programs to control a different signal window), the other signal windows
are kept synchronized with the master window.

Note that you cannot increase the number of signal windows in a group once you have started a wave
process group, although you can run more than one process group at a time if you wish.

MENU FILE
wave uses a simple menu file to allow you to set up analysis options. Each line in the file corresponds to a
button in the Analyze window (except for empty lines and lines that begin with ‘#’, which are ignored).
Within each line, the syntax is label<tab>action, where <tab> is one or more tab characters. The label field
is used to identify a command button in the Analyze window, and the action field is any command accept-
able to your shell. button-label and action may include spaces if needed; if necessary, a ‘\’ may be used at
the end of a line to indicate that it is continued on the next line. Before the command is executed, wave
replaces certain tokens with appropriate strings; these include:

$RECORD
The name of the current record.

$ANNOTATOR
The name of the current input annotator.

$START
The currently selected ‘start analysis’ time.

$END The currently selected ‘end analysis’ time.

$DURATION
The time interval between $END and $START.

$LEFT
The time corresponding to the left edge of the signal window.

$RIGHT
The time corresponding to the right edge of the signal window.

$WIDTH
The time interval between $RIGHT and LEFT.

$SIGNAL
The currently selected signal number (as shown in the Analyze window).

114 28 October 2009 WFDB 10.4.24

WAVE(1) WFDB Applications Guide WAVE(1)

$SIGNALS
The current signal list (as shown in the Analyze window).

$LOG The name of the current log file (as shown in the Log window).

$WFDB
The WFDB path (from the Load window).

$WFDBCAL
The name of the WFDB calibration file (from the Load window).

$TSCALE
The time scale, in mm/sec.

$VSCALE
The amplitude scale, in mm/mV.

$DISPMODE
The annotation display mode (0: annotations displayed in center, no marker bars; 1: annotations
displayed in center, long marker bars; 2: annotations attached to signals, no bars; 3: annotations
attached to signals, short bars; 4: annotations displayed as a signal, no bars; 5: annotations dis-
played as a signal, long bars)

$PSPRINT
The command for printing PostScript data from the standard input, as specified in the Print Setup
window.

$TEXTPRINT
The command for printing text from the standard input, as specified in the Print Setup window.

$URL The URL specified by the most recently selected link.

Other tokens that begin with ‘$’ are passed to the shell unchanged.

Example
The default menu file includes the following lines (among others):

Mark QRS complexes sqrs -r $RECORD -f $START -t $END -s $SIGNAL
Calibrate calsig -r $RECORD -f $START -t $END -s $SIGNALS
Extract segment snip -i $RECORD -f $START -t $END -n n $RECORD \

-a $ANNOTATOR
List annotations rdann -r $RECORD -a $ANNOTATOR -f $START -t $END
List samples rdsamp -r $RECORD -f $START -t $END -s $SIGNALS
Print chart echo $RECORD $START-$END | \

pschart -a $ANNOTATOR -g -l -R -s $SIGNALS - | $PSPRINT
Print full disclosure echo $RECORD $START-$END | \

psfd -a $ANNOTATOR -g -l -R -s $SIGNALS - | $PSPRINT

KEYBOARD COMMANDS
Whenever the pointer is in the signal window, the normal arrow pointer is replaced by a crosshair pointer.
At these times, the numeric keypad and several of the function keys may be used for many annotation edit-
ing and display operations, and the normal alphanumeric and punctuation keys can be used to select single-
character annotation mnemonics (displayed in the Annotation Template window). ‘Num Lock’ must be off
if you wish to use the keypad for editing operations. Some of the function and numeric keypad commands
work on Sun keyboards only; in these cases, alternate keyboard commands for use with PC and other key-
boards are shown in parentheses. Most of these alternate commands also work on Sun keyboards.

<Help> (<F1>)
Open XView spot help for the item under the pointer. (Unlike most of the other keyboard com-
mands, this command is available at any time, not only when the pointer is in the signal window.)

WFDB 10.4.24 28 October 2009 115

WAVE(1) WFDB Applications Guide WAVE(1)

<left arrow>

Select the annotation to the left of the pointer. (Click left to do this using the mouse. These
actions also work when the pointer is in the scope window.)

<right arrow>

Select the annotation to the right of the pointer. (Click right to do this using the mouse. These
actions also work when the pointer is in the scope window.)

<up arrow> Move the selected annotation up one signal (i.e.,
decrement its chan field). This command works in multi-edit mode only (enter multi-edit mode
by choosing ‘attached to signals’ from the ‘Show annotations’ menu in wave’s View window).

<down arrow>

Move the selected annotation down one signal (i.e., increment its chan field). This command
works in multi-edit mode only.

keypad <5> (<F2>)
Insert an annotation at the current position of the pointer. (Click the middle button to do this using
the mouse. Annotation editing must be enabled for this action to be successful.)

keypad <=> (<F3>)
Move the pointer toward the left.

keypad <*> (<F4>)
Move the pointer toward the right.

<Copy> (<F6>)
Copy the selected annotation to the Annotation Template.

<Find> (<F9>)
Search forward.

<ctrl><Find> (<ctrl><F9>)
Search backward.

<End> (<shift><F9>)
Advance to the end of the record.

<Home> (<ctrl><shift><F9>)
Move to the beginning of the record.

<PgDn> (<F10>)
Advance half a screen.

<ctrl><PgDn> (<ctrl><F10>)
Advance a full screen.

<PgUp> (<shift><F10>)
Move back half a screen.

<ctrl><PgUp> (<ctrl><shift><F10>)
Move back a full screen.

<Enter> (<Return>)
(Only if a link annotation has been selected.) Show the external data specified by the link using a
Web browser; start the Web browser first if necessary.

BUGS
Under SunOS, once you have opened the Analyze window or hav e selected Print from the File menu, do
not attempt to suspend wave (for example, by typing control-Z in the controlling terminal window). Under
these circumstances, wave may exit immediately (without quit confirmation) and any unsaved edits may be
lost. This problem is the result of a bug in the XView termsw package used for the Analysis Commands
window. To avoid this bug, always run wave in the background under SunOS. The Linux, Mac OS X, MS
Windows, and Solaris 2.x versions of the XView library do not have this bug.

116 28 October 2009 WFDB 10.4.24

WAVE(1) WFDB Applications Guide WAVE(1)

If wave opens with an empty signal window, this may mean that the X server’s backing store is disabled.
wave versions 6.8 and later incorporate a workaround that avoids this problem. If you must use an earlier
version of wave, enable backing store and restart the X server. (Using the X servers from the x.org or
XFree86 projects, backing store can be enabled by inserting the line ‘Option "backingstore"’ in the
‘Device’ section(s) of the xorg.conf or XF86Config-4 file. If your X server is normally started by a dis-
play manager such as xdm, close all windows and restart the server with <ctrl><alt><backspace>. Oth-
erwise, log out, log in, and restart the X server manually if necessary.)

If this doesn’t solve the problem, use any of wave’s navigation controls, or resize the signal window, to
make the signals visible. On some 24-bit displays, this problem may be the result of an X server bug, and
these methods will work around the problem. On some of these displays, text in the signal window may be
invisible using overlay graphics mode; if this happens, use the -S option.

No more than one piped record (see the WFDB Programmer’s Guide) can be viewed in a single invocation
of wave. If the signal file is a pipe, it is possible only to search forward through it (although wave caches
several of the most recently displayed windows, which can be reviewed in any case). Using the ‘>’ button
to move by half a frame does not work properly with piped input, nor does changing the display scales,
since these actions require rereading the signals.

There appears to be a subtle incompatibility between XView-based applications such as wave and at least
some X servers. The symptom of this problem is that wave’s View panel may be blank, and many warning
messages from the notifier may appear in the controlling terminal window. This problem appears to occur
only when all of the following are true: the X server is running on a multi-head display with Xinerama
enabled, the user does not have root privileges, a .Xdefaults file exists, and wave or another XView appli-
cation has run at least once since the X server was started.

A more serious incompatibility (which may be related to the subtle incompatibility noted above) appeared
with the release in 2009 of the X.org version 1.6.3 X server, which freezes when any application that uses
the XView library (such as wave) ’grabs’ the mouse pointer. By default, XView applications do so in
response to a left button click on any XView control. ’Grabs’ can be disabled, and this behavior avoided, by
using the -Wfsdb option available in wave and in other XView applications. In wave version 6.10 and later
versions, the default behavior of XView has been changed to disable ’grabs’, and this problem does not
occur.

SEE ALSO
pschart(1), xview(7)
WAVE User’s Guide (http://www.physionet.org/physiotools/wug/)
X Window System User’s Guide: Open Look Edition (http://www.oreilly.com/openbook/openlook/)

AV AILABILITY
wave currently runs under FreeBSD, GNU/Linux, Mac OS X, MS-Windows with Cygwin/X, Solaris, and
SunOS. It should be easily portable to any POSIX-compliant OS that can support X11 and XView. If you
would like to use wave on a system other than those listed above, you will need to port XView to your sys-
tem first (or purchase a commercial port if one is available). Sources for XView are available from Phys-
ioNet (www.physionet.org, where the sources for wave itself are also available), www.ibiblio.org, and
their mirrors. We cannot offer assistance in porting XView; if you wish to try this, you are on your own. If
you successfully port the cmdtool terminal emulator application included in the XView sources, we will
assist you in porting wave (this is much simpler than the XView port).

AUTHOR
George B. Moody (george@mit.edu)

SOURCES
http://www.physionet.org/physiotools/wfdb/wav e/

WFDB 10.4.24 28 October 2009 117

WFDB-CONFIG(1) WFDB Applications Guide WFDB-CONFIG(1)

NAME
wfdb-config − print WFDB library version and configuration info

SYNOPSIS
wfdb-config [--cflags] [--libs] [--version]

DESCRIPTION
This program prints information about the WFDB library installation. Use it with one of these options:

--cflags Print options needed by cc(1) or gcc(1) to find the WFDB library’s ’include’ (*.h) files.

--libs Print options needed by cc(1), gcc(1), or ld(1) to find and link a program with the WFDB library
(and, if NETFILES support is compiled into the WFDB library, with the libwww libraries).

--version
Print the version number of the most recent version of the WFDB library that has been installed.

Example
To compile prog.c with the WFDB library, use:

gcc ‘wfdb-config --cflags‘ prog.c ‘wfdb-config --libs‘
Additional options may be added to the command if needed (for example, to link to other libraries).

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/wfdb-config.c

118 2 January 2013 WFDB 10.5.17

WFDB2MAT(1) WFDB Applications Guide WFDB2MAT(1)

NAME
wfdb2mat − convert WFDB-compatible signal file to Matlab .mat file

SYNOPSIS
wfdb2mat -r record [options ...]

DESCRIPTION
This program converts the signals of any PhysioBank record (or one in any compatible format) into a
record.mat file that can be read directly using any version of Matlab, and a short record.hea text file con-
taining information about the signals (names, gains, baselines, units, sampling frequency, and start
time/date if known). In addition, wfdb2mat writes a brief summary of this information to the standard out-
put.

The .mat and .hea output files can also be read by any WFDB application as record RECm.

This program does not convert annotation files; for that task, rdann(1) is recommended.

The output .mat file contains a single matrix named val, containing raw (unshifted, unscaled) samples from
the selected record. Using various options (below), one can select any time interval within a record, or any
subset of the signals, which can be rearranged as desired within the rows of the matrix. Since .mat files are
written in column-major order (i.e., all of column n precedes all of column n+1), each vector of samples is
written as a column rather than as a row, so that the column number in the .mat file equals the sample num-
ber in the input record. If this seems odd, transpose your matrix after reading it!

This program writes version 4 MAT-file format output files (see http://www.math-
works.com/access/helpdesk/help/pdf_doc/matlab/matfile_format.pdf for details). The samples are written
as 32-bit signed integers in little-endian format if the record contains any format 24 or format 32 signals, as
8-bit unsigned integers if the record contains only 8-bit unsigned samples, or as 16-bit signed integers in lit-
tle-endian format otherwise. Although version 5 and newer versions of Matlab normally use a different
(less compact and more complex) format, they can read these files without difficulty. The advantage of ver-
sion 4 MAT-file format, apart from compactness and portability, is that files in these formats are still
WFDB-compatible, given the .hea file constructed by this program.

Options for wfdb2mat include:

-f time Begin at the specified time. By default, wfdb2mat starts at the beginning of the record.

-h Print a brief usage summary.

-H Read the signal files in high-resolution mode (default: standard mode). These modes are identical
for ordinary records. For multifrequency records, the standard decimation of oversampled signals
to the frame rate is suppressed in high-resolution mode (rather, all other signals are resampled at
the highest sampling frequency).

-l interval

Limit the amount of output to the specified time interval (in standard time format; default: no
limit). If both -l and -t are used, wfdb2mat stops at the earlier of the two limits.

-s signal-list

Convert only the signals named in the signal-list (one or more input signal numbers or names, sep-
arated by spaces; default: print all signals). This option may be used to re-order or duplicate sig-
nals.

-S signal

Search for the first valid sample of the specified signal (a signal name or number) at or following
the time specified with -f (or the beginning of the record if the -f option is not present), and begin
converting at that time.

-t time Stop at the specified time. By default, wfdb2mat stops at the end of the record.

Example
To convert record mitdb/200, use this command:

wfdb2mat -r mitdb/200

WFDB 10.5.22 8 December 2013 119

WFDB2MAT(1) WFDB Applications Guide WFDB2MAT(1)

This works even if the input files have not been downloaded; in this case, wfdb2mat reads them directly
from the PhysioNet server.

The output files are mitdb/200m.mat and mitdb/200m.hea. Note that if a subdirectory of the current
directory named mitdb did not exist already, it would be created by wfdb2mat. In addition, if the standard
output of wfdb2mat has been saved in a file named mitdb/200m.info, then the converted data can be read
and plotted in Matlab or Octave from within the mitdb directory by running the command:

plotATM(’200m.mat’, ’200m.info’)
(Download http://physionet.org/physiotools/matlab/plotATM.m and install it in your Matlab or Octave
environment first.)

Note that when EDF (or EDF+, BDF, or BDF+) files are used as input, they may have empty ’physical
dimension’ (units) fields, which imply that the associated signals are dimensionless (for example, they may
be event markers or categorical variables). In such cases, wfdb2mat records the signal units as nd (no
dimension).

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

AV AILABILITY
This program is provided in the convert directory of the WFDB Software Package. Run make in that direc-
tory to compile and install it if it has not been installed already.

The PhysioNet ATM (http://physionet.org/cgi-bin/ATM) provides web access to wfdb2mat (select Export
signals as .mat from the Toolbox).

SEE ALSO
a2m(1), edf2mit, snip(1), wav2mit(1), xform(1), wfdb(3), header(5)
http://physionet.org/physiotools/matlab/plotATM.m

AUTHOR
George B. Moody (george@mit.edu)

SOURCES
http://www.physionet.org/physiotools/wfdb/convert/wfdb2mat.c

120 8 December 2013 WFDB 10.5.22

WFDBCAT(1) WFDB Applications Guide WFDBCAT(1)

NAME
wfdbcat − copy WFDB files to standard output

SYNOPSIS
wfdbcat file [file ...]

DESCRIPTION
This program locates files anywhere in the WFDB path and copies them to the standard output. If linked
with a version of the WFDB library that has been compiled with NETFILES support, wfdbcat can be par-
ticularly useful for retrieving files from remote web (HTTP) and FTP servers.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
setwfdb(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/wfdbcat.c

WFDB 10.2.7 1 August 2002 121

WFDBCOLLATE(1) WFDB Applications Guide WFDBCOLLATE(1)

NAME
wfdbcollate − collate WFDB records into a multi-segment record

SYNOPSIS
wfdbcollate -i irec [irec ...] -o orec [-a annotator]
wfdbcollate orec first last [-a annotator]
wfdbcollate -s irec -o orec [-l segment-length]

DESCRIPTION
A multi-segment record is the concatenation of one or more ordinary records. A multi-segment record is a
‘‘virtual’’ record, in the sense that it has no signal files of its own. Its header file contains a list of the
records that comprise the multi-segment record. A multi-segment record may have associated annotation
files, but these are independent of any annotation files that may exist for its constituent segments. It is per-
missible (though not particularly useful) to create a multi-segment record with only one segment; it is not
permissible to use a multi-segment record as a segment within a multi-segment record, however.

wfdbcollate simply constructs an array of segment names, passing it to the WFDB library function
setmsheader (see wfdb(3)) to create a multi-segment header file. In the first form of the command, orec is
the name of the multi-segment (output) record to be created, and the irec arguments are the names of the
(single-segment) input records that are to be included in the output record. At least one input record name
must be specified.

In the second form of the command, orec is again the name of the multi-segment (output) record to be cre-
ated, and first and last are numbers between 1 and 99999. In this case, orec must be 3 characters or fewer
(longer names are truncated), and the names of the input records are derived by appending first, first+1, ...,
last to orec (representing first, ..., as 5-digit zero-padded decimal numbers). Thus the command

wfdbcollate xyz 9 12
is equivalent to

wfdbcollate -o xyz -i xyz00009 xyz00010 xyz00011 xyz00012

Each segment must contain the same number of signals, and the sampling frequency must be the same for
each segment. Each input record header must specify its record length (use wfdbdesc(1) to determine the
input record length if necessary, then edit the input record header to include this information before using
wfdbcollate). In most cases you will want to be sure that corresponding signals match in each segment, and
that the gains, ADC zero levels, and numbers of samples per frame (see header(5)) also match. It is not
necessary that the signal file formats match, however.

In the first two forms, -a annotator is optional; if included, it specifies the annotator name of annotation
files associated with the input records, files to be concatenated to form a similarly-named annotation file for
orec. Note that all of the files to be concatenated must have the same annotator name. It is not necessary
that this annotator exist for each input record, however.

The third form of the command, which includes the -s option, can be used to split an existing record (irec)
into multiple segments. In this mode, wfdbcollate first creates a set of segments from irec, then collates
them into a multi-segment record. In this mode, the -l option may be used to specify a non-standard seg-
ment length, which must be no less than 15 seconds. By default, segments are 10 minutes long, although
the last segment in the record may be shorter. The names of the segments created in this way are formed
from the first three characters of orec and from a 5-digit zero-padded segment number, as in the second
form of the command.

In most cases, multi-segment records are indistinguishable from single-segment records, from the point of
view of applications built using the WFDB library (version 9.1 or later). Use xform(1) to generate a single-
segment record from a multi-segment record if necessary (for example, to make it readable by an applica-
tion built using an earlier version of the WFDB library). Note, however, that older applications can gener-
ally be updated without source changes simply by recompiling them and linking them with the current
WFDB library.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

122 1 August 2002 WFDB 10.2.7

WFDBCOLLATE(1) WFDB Applications Guide WFDBCOLLATE(1)

FILES
orec.hea output header file

irec.hea input header file(s)

BUGS
Under MS-DOS, this program is known as wfdbcoll8.

SEE ALSO
wfdbdesc(1), xform(1), wfdb(3), header(5)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/wfdbcollate.c

WFDB 10.2.7 1 August 2002 123

WFDBDESC(1) WFDB Applications Guide WFDBDESC(1)

NAME
wfdbdesc − read signal specifications

SYNOPSIS
wfdbdesc record [-readable]

DESCRIPTION
This program reads specifications for the signals described in the header file for record. If the -readable
option is present, wfdbdesc attempts to open the signal files, and it reports only on those that are readable.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

FILES
record.hea header file

signal files named in record.hea

AV AILABILITY
This program is provided in the app directory of the WFDB Software Package. Run make in that directory
to compile and install it if it have not been installed already.

The PhysioNet ATM (http://physionet.org/cgi-bin/ATM) provides web access to wfdbdesc (select Describe
record from the Toolbox).

SEE ALSO
setwfdb(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/wfdbdesc.c

124 28 October 2009 WFDB 10.4.24

WFDBMAP(1) WFDB Applications Guide WFDBMAP(1)

NAME
wfdbmap − make a synoptic map of a WFDB record

SYNOPSIS
wfdbmap -r record [-a annotator ...]
map-record -r record [-a annotator ...]

DESCRIPTION
wfdbmap generates a shell script containing commands and embedded data for creating a synoptic map of
a WFDB-compatible record, optionally including one or more associated sets of annotations (specified by
one or more annotator names following the -a option). When the script is run, it creates a PostScript-for-
mat ’map’ of the WFDB record and its annotations, using lwplt from the plt(1) package. The maps dis-
played by the PhysioBank ATM are created in this way, with an additional conversion of the PostScript map
to browser-compatible PNG format using convert from ImageMagick (http://www.imagemagick.org/).

map-record is a shell script that illustrates how wfdbmap and (indirectly) plt are used to create a map, and
how to convert the PostScript map into a PNG-format map using convert.

For example, to make a map of mitdb/200 and its associated ’atr’ annotations, run the command:

map-record mitdb/200 -a atr

The outputs of this command are 200.ps and 200.png. If other annotation files are available, their annotator
names can be given as additional command-line arguments:

map-record record -a ann1 ann2 ann3 ...

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
plt(1), setwfdb(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/wfdbmap.c http://www.physionet.org/phys-
iotools/wfdb/app/signal-colors.h http://www.physionet.org/physiotools/wfdb/app/map-record

WFDB 10.5.10 15 November 2011 125

WFDBTIME(1) WFDB Applications Guide WFDBTIME(1)

NAME
wfdbtime − convert time to sample number, elapsed, and absolute time

SYNOPSIS
wfdbtime -r record time [time ...]

DESCRIPTION
Using the specified record as a reference for determining the length of a sample interval and the absolute
time represented by sample number 0, this program accepts one or more time arguments (in WFDB stan-
dard time format) and produces one line on the standard output for each such argument. In each output
line, the corresponding time is written as a sample number (in the form snnn), as an elapsed time interval in
hours, minutes, and seconds from the beginning of the record (in the form hh:mm:ss.sss), and as an abso-
lute time and date (in the form [hh:mm:ss.sss DD/MM/YYYY]). If the base time for the record is undefined,
the absolute time cannot be calculated, and in this case the elapsed time appears (a second time) instead.

Additional -r record arguments may be given in the same command, to reset the sample interval length and
base time for any subsequent time arguments.

EXAMPLES
The command

wfdbtime -r mimicdb/237/237 0 10:0 s20 "[14:0:0 20/7/1995]" e

produces the output

s0 0:00.000 [12:40:38.000 20/07/1995]
s75000 10:00.000 [12:50:38.000 20/07/1995]

s20 0:00.160 [12:40:38.160 20/07/1995]
s595250 1:19:22.000 [14:00:00.000 20/07/1995]

s19199992 42:39:59.936 [07:20:37.936 22/07/1995]

Note that the input arguments need not be zero-padded, that an input argument in absolute time format must
be quoted to protect the brackets from the shell, and that the input argument e is evaluated as the time of the
last sample in the input record.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

FILES
record.hea header file

SEE ALSO
time2sec(1)
http://www.physionet.org/physiotools/wpg/strtim.htm (for further details about standard time format and
additional examples)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/wfdbtime.c

126 1 March 2009 WFDB 10.4.16

WFDBWHICH(1) WFDB Applications Guide WFDBWHICH(1)

NAME
wfdbwhich − find a WFDB file and print its pathname

SYNOPSIS
wfdbwhich [-r record] filename

wfdbwhich [-r record] file-type record

DESCRIPTION
This program searches the WFDB path (as specified by the environment variable WFDB, see setwfdb(1))
for a specified filename, or for a file of a specified file-type (e.g., ‘hea’ or ‘atr’) that belongs to a specified
record. If the file can be found, its full pathname is written to the standard output, and wfdbwhich exits
with an exit status of zero (indicating success). If the file cannot be found, a diagnostic message, including
the current value of the WFDB path, is written to the standard error output, and wfdbwhich exits with a non-
zero exit status.

If the WFDB path includes ‘%r’, use the -r record option to specify the record name to be substituted for
‘%r’.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
setwfdb(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/wfdbwhich.c

WFDB 10.2.7 1 August 2002 127

WQRS(1) WFDB Applications Guide WQRS(1)

NAME
wqrs − single-channel QRS detector based on length transform

SYNOPSIS
wqrs -r record [options ...]

DESCRIPTION
wqrs attempts to locate QRS complexes in an ECG signal in the specified record. The detector algorithm is
based on the length transform. The output of wqrs is an annotation file (with annotator name wqrs) in
which all detected beats are labelled normal; the annotation file will also contain optional J-point annota-
tions if the -j option (see below) is used.

wqrs can process records containing any number of signals, but it uses only one signal for QRS detection
(signal 0 by default; this can be changed using the -s option, see below). wqrs is optimized for use with
adult human ECGs. For other ECGs, it may be necessary to experiment with the sampling frequency as
recorded in the input record’s header file (see header(5)), the detector threshold (which can be set using the
-m option), and the time constants indicated in the source file.

wqrs optionally uses the WFDB library’s setifreq function to resample the input signal at 120 or 150 Hz
(depending on the mains frequency, which can be specified using the -p option). wqrs performs well using
input sampled at a range of rates up to 360 Hz and possibly higher rates, but it has been designed and tested
to work best on signals sampled at 120 or 150 Hz.

Options include:

-d Dump the raw and length-transformed input samples in text format on the standard output, but do
not detect or annotate QRS complexes.

-f time Begin at the specified time in record (default: the beginning of record).

-h Print a brief usage summary.

-H Read the signal files in high-resolution mode (default: standard mode). These modes are identical
for ordinary records. For multifrequency records, the standard decimation of oversampled signals
to the frame rate is suppressed in high-resolution mode (rather, all other signals are resampled at
the highest sampling frequency).

-j Find and annotate J-points (QRS ends) as well as QRS onsets.

-m threshold

Specify the detection threshold (default: 100 microvolts); use higher values to reduce false detec-
tions, or lower values to reduce the number of missed beats.

-p frequency

Specify the power line (mains) frequency used at the time of the recording, in Hz (default: 60).
wqrs will apply a notch filter of the specified frequency to the input signal before length-trans-
forming it.

-R Resample the input at 120 Hz if the power line frequency is 60 Hz, or at 150 Hz otherwise
(default: do not resample).

-s signal

Specify the signal (number or name) to be used for QRS detection (default: 0).

-t time Process until the specified time in record (default: the end of the record).

-v Verbose mode: print information about the detector parameters.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

EXAMPLES
To mark QRS complexes in record 100 beginning 5 minutes from the start, ending 10 minutes and 35 sec-
onds from the start, and using signal 1, use the command:

wqrs -r 100 -f 5:0 -t 10:35 -s 1

128 7 January 2009 WFDB 10.4.12

WQRS(1) WFDB Applications Guide WQRS(1)

The output annotations may be read using (for example):
rdann -a wqrs -r 100

To evaluate the performance of this program, run it on the entire record, by:
wqrs -r 100

and then compare its output with the reference annotations by:
bxb -r 100 -a atr wqrs

SEE ALSO
bxb(1), ecgpuwave(1), rdann(1), setwfdb(1), sqrs(1)

Zong W, Moody GB, and Jiang D. A robust open-source algorithm to detect onset and duration of QRS
complexes. Computers in Cardiology 30:737−740 (2003).

AUTHORS
Wei Zong (wzong@mit.edu) and George B. Moody (george@mit.edu).

SOURCE
http://www.physionet.org/physiotools/wfdb/app/wqrs.c

WFDB 10.4.12 7 January 2009 129

WRANN(1) WFDB Applications Guide WRANN(1)

NAME
wrann − write a WFDB annotation file

SYNOPSIS
wrann -r record -a annotator

DESCRIPTION
wrann translates its standard input into an annotation file. The format of wrann input should be that pro-
duced by rdann(1) using its default settings. Specifically, the pipeline

rdann -r record -a iann -f 0 | wrann -r record -a oann

is guaranteed to produce an identical copy of the annotation file read by rdann, provided that the aux fields
of the annotations do not contain embedded nulls.

The usual application for wrann is as an aid to annotation file editing: an annotation file may be translated
into ASCII format using rdann, edited using a text editor, and then translated back into annotation file for-
mat using wrann.

Note the alternate format selected by rdann’s -x option is incompatible with wrann.

Versions of wrann included in version 10.4.20 (and later versions) of the WFDB Software Package set the
time fields of output annotations to match the times in the first column of input if those times appear to be
absolute times (beginning with ’[’). Otherwise, as in previous versions, wrann matches the sample num-
bers given in the second column of input. This capability can be used in a pipeline with rdann to copy a
set of annotations between two records that overlap in time, even if their starting times or sampling frequen-
cies are different.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

SEE ALSO
rdann(1), setwfdb(1)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/wrann.c

130 9 April 2009 WFDB 10.4.20

WRSAMP(1) WFDB Applications Guide WRSAMP(1)

NAME
wrsamp − write WFDB signal files

SYNOPSIS
wrsamp [options ...] [column ...]

DESCRIPTION
wrsamp reads text-format input and writes the specified columns in WFDB signal file format 16 (see sig-
nal(5)), either to the standard output or to a disk file (see the -o option below). If no columns are specified,
all columns are written (but see the -z option below).

Normally, wrsamp’s input is line- and column-oriented, with line separator characters (usually ASCII
linefeeds) separating input lines, and field separator characters (usually tabs, spaces, or commas) separat-
ing columns within each line. Columns need not be of constant width; the only requirement is that one or
more field separator characters appear between adjacent columns. The output of rdsamp(1) is an example
of an acceptable input format, as is CSV (comma-separated value) format.

If the first input line contains any alphabetic character, it is assumed to contain signal names (column head-
ings), and these are copied to the output header file (see the -o option below). In this case, if the second
input line also contains any alphabetic character, it is assumed to contain unit names (i.e., the names of the
physical units of each signal), and these are also copied to the output header file. Spaces embedded within
unit names are written as underscores in the header file.

Lines are identified by line number. The first line of input not containing any alphabetic character is line 0.
Similarly, columns are identified by column number, and the leftmost column is column 0. Columns may
be selected in any order, and any giv en column may be selected more than once, or omitted. The order of
column arguments determines the order of the signals in the output (data from the first column specified are
written as signal 0, etc.) If an entry in a specified column is "-" (i.e., flagged as missing or invalid), or if an
entry in a specified column is any other non-numeric value, wrsamp records it as an invalid sample in its
output.

If line 0 appears to begin with a timestamp (a field of the form [hh:mm:ss.sss dd/mm/yyyy]), wrsamp
records it as the base time (starting time) in the output header file.

Options include:

-c Check that each input line contains the same number of fields. (This test is normally disabled, to
allow for input files containing preambles, trailers, or occasional extra fields not intended to be
read as samples.)

-d Dither the input before converting it to integer output, by adding a random value to each sample.
The random values are selected from a triangular probability density function between -1 and +1.
Dithering is appropriate whenever the output has a lower resolution than the input. Note that the
RNG used to generate the pseudo-random values is started with a fixed seed, so that wrsamp’s
output is strictly reproducible. Change the seed in the source and recompile to obtain a different
realization of dither if desired.

-f n Start copying with line n. By default, wrsamp starts at the beginning of its standard input (line 0).

-F n Specify the sampling frequency (in samples per second per signal) for the output signals (default:
250). This option is useful only in conjunction with -o, since it affects the output header file only.
This option has no effect on the output signal file, which contains one sample per signal for each
line of input. If you wish to change the sampling frequency in the signal file, see xform(1).

-G n Specify the gain (in A/D units per millivolt) for the output signals (default: 200). To specify dif-
ferent gains for each output signal, provide a quoted list of values in place of n (see the examples
below). This option is useful only in conjunction with -o, since it affects the output header file
only. This option has no effect on the output signal file. If you wish to rescale samples in the sig-
nal file, use -x.

-h Print a usage summary.

WFDB 10.4.25 21 January 2010 131

WRSAMP(1) WFDB Applications Guide WRSAMP(1)

-i file Read input from the specified file (default: standard input).

-l n Read up to n characters in each line (default: 1024). Longer lines are truncated (with a warning
message identifying the line number of the offending line).

-o record Write the signal file in the current directory
as record.dat, and create a header file in the current directory for the specified record. By default,
wrsamp writes the signal file to its standard output, and does not create a header file.

-O format

Write the signal file in the specified format (default: 16). See signal(5) for descriptions and names
of available formats.

-r c Interpret c as the input line separator (default: \n, the ASCII linefeed character). This option may
be useful, for example, to read Macintosh files containing carriage-return delimited lines. Note
that no special treatment is required for files containing both carriage returns and linefeeds.

-s c Interpret c as the input field separator (default: both spaces and tabs are treated as input field sepa-
rators). If this option is used, c is the only character treated as a field separator.

-t n Stop copying at line n (line n is not processed). By default, wrsamp stops when it reaches the end
of file on its standard input.

-x n Multiply all input samples by n (default: 1) before writing them to the output signal file. To spec-
ify different scaling factors for each signal, provide a quoted list of values in place of n (see the
examples below).

-z Don’t copy column 0 unless explicitly specified.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

Examples
rdsamp -r 100s | wrsamp -o 100w -F 360 1 2

This command creates a record named ‘100w’ that is a copy of record ‘100s’ (although the signal file for-
mat is different). If the -F 360 option were omitted, the output signal file (‘100w.dat’) would be
unchanged, but the header file for record ‘100w’ would indicate that the sampling frequency was (the
default) 250 Hz, rather than 360 Hz as in record 100s; this is because wrsamp has no other way of deter-
mining the sampling frequency of its input. Note that columns 1 and 2 of wrsamp’s input correspond to
signals 0 and 1 respectively; column 0 is the sample number, not useful to wrsamp.

wrsamp -i in.txt -o out -G "100 100 50" -x "1 .5 -10 2" 4 1 0 3
This command creates a record named ‘out’ that contains signals derived from four columns of its input
(‘in.txt’). Notice that the argument of the -G (gain) option is the quoted string "100 100 50"; the effect is
that the gains of the first two output signals are set to 100, and that of the third is 50. Since no explicit gain
is specified for the fourth signal, it is assigned the same gain as the previous (third) signal (i.e., 50). Simi-
larly, the quoted argument of the -x option specifies scaling factors applied to the samples before they are
written to the output signal file: output signal 0 will be unscaled (scale factor 1), signal 1 will be halved
(.5), signal 2 will be scaled by 10 and inverted (-10), and signal 3 will be doubled (2). Finally, note that the
four columns selected from the input file have been rearranged, so that the leftmost column (0) will become
output signal 2, etc.

SEE ALSO
rdsamp(1), setwfdb(1), xform(1), signal(5)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/wrsamp.c

132 21 January 2010 WFDB 10.4.25

XFORM(1) WFDB Applications Guide XFORM(1)

NAME
xform − sampling frequency, amplitude, and format conversion for WFDB records

SYNOPSIS
xform -i input-record [options ...]

DESCRIPTION
xform copies the signal files (and, optionally, annotation files) of the specified input-record. By default, all
signals are copied in their entirety; using appropriate options, xform can be used to copy only a portion of
the record, or only a subset of the signals, or both. Options are:

-a annotator

Copy the specified annotator as well as the signal files. Tw o or more annotator arguments, sepa-
rated by spaces, can follow -a. An annotator supplied via the standard input may be specified
using ‘-’, but only immediately after -a; in this case only, annotations are copied to the standard
output.

-c Clip the output (set any sample values that would fall outside of the range supported by the
selected format to the maximum or minimum supported values). By default, the output is not
clipped; rather, the values are wrapped around modulo the supported range (i.e., the excess high-
order bits are simply discarded). Use of wrap-around can result in bizarre artifacts, but has the
advantage that the affected portions of the output signals can (usually) be interpreted properly.
Clipping mode is appropriate for testing algorithms or devices that must operate using a more
restricted amplitude range than was used when digitizing the original record.

-d Dither the input by adding a pseudo-random value to each sample. The pseudo-random values are
selected from a triangular probability density function between -1 and +1. Dithering is appropriate
whenever the output has a lower resolution than the input, as may occur when changing the sam-
pling frequency or gain. The -d option has no effect unless the sampling frequency or gain are
changed in the output record. Note that the RNG used to generate the pseudo-random values is
started with a fixed seed, so that xform’s output is strictly reproducible. Change the seed in the
source and recompile to obtain a different realization of dither if desired.

-f time Begin at the specified time in the input record (default: the beginning of the record).

-h Print a usage summary.

-H Read the signals in high-resolution mode (default: standard mode). These modes are identical for
ordinary records. For multifrequency records, the standard decimation of oversampled signals to
the frame rate is suppressed in high-resolution mode (rather, all other signals are resampled at the
highest sampling frequency).

-M Read the signals in multifrequency mode. Each signal (in a multifrequency record) is copied to
the output record without changing its sampling frequency. In an ordinary record, this option has
no effect other than to force the input and output sampling frequencies to be equal.

-n new-record

Create a new-record for the output signal files.

-N new-record

As above, but copy the signal descriptions from the header file for the record specified using the -o
option (see below) rather than from the input record.

-o output-record

The header file for output-record (which must exist before running xform) determines the names,
sampling frequency, formats (see signal(5)), gains, and ADC zero levels of the output signals. If
the -o option is absent, xform prompts the user for the output specifications.

-s signal-list

Write only the signals named in the signal-list (one or more input signal numbers or names, sepa-
rated by spaces; default: write all signals). This option may be used to re-order or duplicate sig-
nals.

WFDB 10.4.12 7 January 2009 133

XFORM(1) WFDB Applications Guide XFORM(1)

-S script

Take answers to prompts from the specified script (a text file).

-t time Process until the specified time in the input record (default: continue to the end of the record).

-u Adjust annotation times as needed so that they are unique. If the output sampling frequency is less
than that of the input, the times of closely-spaced annotations may coincide in the output, which
may cause problems for some older WFDB applications. The -u option avoids this.

If a new-record is specified, a new header file is created after the signal file transformation is complete. The
new header file, if created, contains the correct sample counts and checksums for the new signal files. Any
output annotation files that are created as a result of using −a are associated with new-record if it has been
specified, or with output-record otherwise. To process only a segment of the input-record, specify the start-
ing and ending times using the -f and -t options.

Sampling frequency changes are performed by linear interpolation; any combination of input and output
sampling frequencies is permissible. This interpolation method has the advantage of being reasonably fast,
an important consideration since it is often necessary to operate on a million or more samples. Resampling
noise is not a significant problem for the typical applications of xform (changing the sampling frequency
by factors of five or less). Aliasing can be a problem, however, when the input sampling frequency is
greater than the output sampling frequency. In such cases, if the input signals contain frequency compo-
nents at or above half of the output sampling frequency, the input signals should be low-pass filtered (using,
for example fir(1)) to remove these components before processing them with xform. Conversely, if the
output sampling frequency is substantially greater than the input sampling frequency, resampling noise
introduced at frequencies in excess of half of the input sampling frequency can be removed by low-pass fil-
tering the output signals.

Normally, the ADC resolution fields in the header files are ignored, and scaling is determined by the ratios
of the gain fields. An undefined (0) gain is considered equivalent to a gain of 200 ADC units per physical
unit. An exception to this rule occurs if both input and output gains are undefined; in this case, scaling is
determined by the difference in the ADC resolution fields, if any.

Also note that xform writes over any existing data files named in the header file for output-record; thus
output-record should not be the name of an ordinary database record. Normally, the database signal files
are read-only, and attempts to overwrite them are futile. For many applications the "piped records" 8 and
16 and the "local records" 8l and 16l will be found useful as output records.

If signal selection, scaling, and sampling frequency conversion are not needed, snip(1) is recommended as
a faster alternative to xform.

ENVIRONMENT
It may be necessary to set and export the shell variable WFDB (see setwfdb(1)).

DIAGNOSTICS
As xform runs, it prints a ‘.’ on the standard error output for each minute processed. If any of the output
samples fall outside the range of values that can be properly represented using the specified output format,
xform issues warnings but continues to process the record.

SEE ALSO
fir(1), setwfdb(1), snip(1), signal(5)

AUTHOR
George B. Moody (george@mit.edu)

SOURCE
http://www.physionet.org/physiotools/wfdb/app/xform.c

134 7 January 2009 WFDB 10.4.12

WFDB(3) WFDB Applications Guide WFDB(3)

NAME
wfdb − Wav eform Database library

SYNOPSIS
#include <wfdb/wfdb.h>

int adumuv(WFDB_Signal s, WFDB_Sample adc_units)
double aduphys(WFDB_Signal s, WFDB_Sample adc_units)
char *anndesc(int annotation_code)
int annopen(char *record, WFDB_Anninfo *aiarray, unsigned int nann)
char *annstr(int annotation_code)
int calopen(char *calibration_filename)
char *datstr(WFDB_Date d)
char *ecgstr(int annotation_code)
int findsig(char *signal_name)
void flushcal(void)
WFDB_Frequency getafreq(void)
int getann(WFDB_Annotator a, WFDB_Annotation *annotation)
double getbasecount(void)
int getcal(char *description, char *units, WFDB_Calinfo *cal)
WFDB_Frequency getcfreq(void)
int getgvmode(void)
WFDB_Frequency getiafreq(WFDB_Annotator a)
WFDB_Frequency getiaorigfreq(WFDB_Annotator a)
WFDB_Frequency getifreq(void)
int getseginfo(WFDB_Seginfo **segments)
char *getwfdb(void)
int getframe(WFDB_Sample *vector)
char *getinfo(char *record)
int getspf(void)
int getvec(WFDB_Sample *vector)
void iannclose(WFDB_Annotator a)
int iannsettime(WFDB_Time t)
int isgsettime(WFDB_Group signal_group, WFDB_Time t)
int isigopen(char *record, WFDB_Siginfo *siarray, int nsig)
int isigsettime(WFDB_Time t)
char *mstimstr(WFDB_Time t)
WFDB_Sample muvadu(WFDB_Signal s, int microvolts)
int newcal(char *calibration_filename)
int newheader(char *record)
void oannclose(WFDB_Annotator a)
int osigfopen(WFDB_Siginfo *siarray, unsigned int nsig)
int osigopen(char *record, WFDB_Siginfo *siarray, unsigned int nsig)
WFDB_Sample physadu(WFDB_Signal s, double v)
int putann(WFDB_Annotator a, WFDB_Annotation *annotation)
int putcal(WFDB_Calinfo *cal)
int putinfo(char *info)
int putvec(WFDB_Sample *vector)
WFDB_Frequency sampfreq(char *record)
WFDB_Sample sample(WFDB_Signal s, WFDB_Time t)
int sample_valid(void)
void setafreq(WFDB_Frequency annotation_clock_frequency)
int setanndesc(int annotation_code, char *annotation_description)
int setannstr(int annotation_code, char *annotation_mnemonic_string)
void setbasecount(double base_count)
int setbasetime(char *time_string)

WFDB software 10.6.0 3 November 2017 135

WFDB(3) WFDB Applications Guide WFDB(3)

void setcfreq(WFDB_Frequency counter_frequency)
void setiafreq(WFDB_Annotator a, WFDB_Frequency annotation_clock_frequency)
int setifreq(WFDB_Frequency getvec_frequency)
void setwfdb(char *database_path_string)
int setecgstr(int annotation_code, char *annotation_mnemonic_string)
void setgvmode(int mode)
int setheader(char *record, WFDB_Siginfo *siarray, unsigned int nsig)
int setibsize(int size)
int setmsheader(char *record, char **seg_names, unsigned int nsegments)
int setobsize(int size)
int setsampfreq(WFDB_Frequency sampling_frequency)
int strann(char *annotation_mnemonic_string)
WFDB_Date strdat(char *date_string)
int strecg(char *annotation_mnemonic_string)
WFDB_Time strtim(char *time_string)
char *timstr(WFDB_Time t)
WFDB_Time tnextvec(WFDB_Signal s, WFDB_Time t)
int ungetann(WFDB_Annotator a, WFDB_Annotation *annotation)
const char *wfdbcflags(void)
const char *wfdbdefwfdb(void)
const char *wfdbdefwfdbcal(void)
char *wfdberror(void)
char *wfdbfile(char *type, char *record)
void wfdbflush(void)
int wfdbgetskew(WFDB_Signal s)
long wfdbgetstart(WFDB_Signal s)
int wfdbinit(char *record, WFDB_Anninfo *aiarray, unsigned int nann,

WFDB_Siginfo *siarray, unsigned int nsig)
const char *wfdbldflags(void)
void wfdbmemerr(int exit_on_error)
int wfdbputprolog(char *prolog, long bytes, WFDB_Signal s)
void wfdbquiet(void)
void wfdbquit(void)
void wfdbsetskew(WFDB_Signal s, int skew)
void wfdbsetstart(WFDB_Signal s, long byte_offset)
void wfdbverbose(void)
const char *wfdbversion(void)

DESCRIPTION
Wa veform databases (including the MIT-BIH Arrhythmia Database, the AHA Database for Evaluation of
Ventricular Arrhythmia Detectors, and the European ST-T Database) are accessible to applications written
in C and C++ via the functions defined in the WFDB library. Under UNIX, programs may be linked with
the WFDB library by using the -lwfdb option at the end of the C or C++ compiler command. The functions
are described in detail in the reference below.

FILES
UNIX systems:

/usr/lib/libwfdb.a standard (statically bound) library

/usr/lib/libwfdb.so

/usr/lib/libwfdb.so.M.N shareable library (bound at run-time, not available on all systems). On some
systems, one of these pathnames is a link to the other, and both are needed; on
others, only one of the pathnames is needed.

/usr/lib/libwfdb.sa stubs for linking with applications that use libwfdb.so (not needed on all sys-
tems).

136 3 November 2017 WFDB software 10.6.0

WFDB(3) WFDB Applications Guide WFDB(3)

The location of these files may vary on some systems.

MS-DOS/MS Windows systems:
wfdb.lib

standard (small memory model) library

wfdbl.lib
large memory model library

wfdb.dll
dynamic link library for MS Windows

wfdbdll.lib
stubs for linking with applications that use wfdb.dll

SEE ALSO
WFDB Programmer’s Guide

On systems that support GNU emacs, the Guide may be available on-line using emacs info; from
within emacs, type control-H followed by i to find out. An HTML version may be installed on
your system (in /usr/help/html/wpg); the most recent version can be viewed on-line at
http://www.physionet.org/physiotools/wpg/.

The WFDB library can also be used with Fortran programs; see wfdbf(3) and the Guide for details.

DIAGNOSTICS
All functions that return an int indicate errors with negative values. Depending on context, zero returns
may indicate success or failure. Positive values indicate success. Most errors other than EOF are accompa-
nied by diagnostics on the standard error output.

AUTHORS
George B. Moody (george@mit.edu), with contributions from many sources. The predecessor of the
WFDB library was originally implemented in C by George Moody and Ted Baker, based on earlier designs
by Paul Schluter and Larry Siegal. Other contributors of code and ideas include Paul Albrecht, Mike
Dakin, Phil Devlin, Scott Greenwald, David Israel, Roger Mark, Joe Mietus, and Warren Muldrow. Pat
Hamilton and Bob Farrell contributed ports, to MacOS and Win32 respectively.

SOURCES
http://www.physionet.org/physiotools/wfdb/lib/

WFDB software 10.6.0 3 November 2017 137

WFDBF(3) WFDB Applications Guide WFDBF(3)

NAME
wfdbf − Wav eform Database library wrappers for Fortran

SYNOPSIS
implicit integer(a-z)
real aduphys, getbasecount, getcfreq, getifreq, sampfreq, getafreq, getiafreq, getiaorigfreq
character aux(256), desc(80), filetype(32), fname(40), name(20), pathname(80), record(16), string(32),
units(20), prolog(1000), version(80), options(80)
integer a, adcres, adczero, ampl, anntyp, baseline, bsize, caltype, chan, cksum, date, dummy, fmt, group,
initval, microvolts, mode, nann, nsamp, nsig, num, s, spf, stat, subtyp, time, v(32), value, bytes
real gain, frequency, high, low, scale

setanninfo(a, name, stat)
getsiginfo(s, fname, desc, units, gain, initval, group, fmt, spf, bsize, adcres, adczero, baseline, nsamp,
cksum)
setsiginfo(s, fname, desc, units, gain, initval, group, fmt, spf, bsize, adcres, adczero, baseline, nsamp,
cksum)
annopen(record, nann)
isigopen(record, nsig)
osigopen(record, nsig)
osigfopen(nsig)
wfdbinit(record, nann, nsig)
findsig(desc)
setgvmode(mode)
getgvmode(dummy)
getspf(dummy)
getvec(v)
getframe(v)
putvec(v)
getann(a, time, anntyp, subtyp, chan, num, aux)
ungetann(a, time, anntyp, subtyp, chan, num, aux)
putann(a, time, anntyp, subtyp, chan, num, aux)
isigsettime(time)
isgsettime(group, time)
tnextvec(s, time)
iannsettime(time)
ecgstr(code, string)
strecg(string)
setecgstr(code, string)
annstr(code, string)
strann(string)
setannstr(code, string)
anndesc(code, string)
setanndesc(code, string)
setafreq(frequency)
getafreq(dummy)
setiafreq(a, frequency)
getiafreq(a)
getiaorigfreq(a)
iannclose(a)
oannclose(a)
timstr(time, string)
mstimstr(time, string)
strtim(string)
datstr(date, string)
strdat(string)

138 3 November 2017 WFDB 10.6.0

WFDBF(3) WFDB Applications Guide WFDBF(3)

adumuv(s, ampl)
muvadu(s, microvolts)
aduphys(s, ampl)
physadu(s, value)
sample(s, time)
sample_valid(dummy)
calopen(fname)
getcal(desc, units, low, high, scale, caltype)
putcal(desc, units, low, high, scale, caltype)
newcal(fname)
flushcal(dummy)
getinfo(record, string)
putinfo(string)
setinfo(record)
wfdb_freeinfo(dummy)
newheader(record)
setheader(record, nsig)
wfdbgetskew(s)
wfdbsetiskew(s, value)
wfdbsetskew(s, value)
wfdbgetstart(s)
wfdbsetstart(s, value)
wfdbputprolog(prolog, bytes, s)
wfdbquit(dummy)
sampfreq(record)
setsampfreq(frequency)
getcfreq(dummy)
setcfreq(frequency)
getifreq(dummy)
setifreq(frequency)
getbasecount(dummy)
setbasecount(frequency)
setbasetime(string)
wfdbquiet(dummy)
wfdbverbose(dummy)
wfdberror(string)
setwfdb(string)
getwfdb(string)
resetwfdb(dummy)
setibsize(value)
setobsize(value)
wfdbfile(filetype, record, pathname)
wfdbflush(dummy)
wfdbmemerr(mode)
wfdbversion(version)
wfdbldflags(options)
wfdbcflags(options)
wfdbdefwfdb(string)
wfdbdefwfdbcal(fname)
isann(anntyp)
isqrs(anntyp)
setisqrs(anntyp, value)
map1(anntyp)
setmap1(anntyp, value)

WFDB 10.6.0 3 November 2017 139

WFDBF(3) WFDB Applications Guide WFDBF(3)

map2(anntyp)
setmap2(anntyp, value)
ammap(anntyp)
mamap(anntyp, subtyp)
annpos(anntyp)
setannpos(anntyp, value)

DESCRIPTION
Fortran programs can use the WFDB library to read and write wav eform database files. Differences in
argument-passing conventions between Fortran and C (the language of the WFDB library) require the use
of a set of wrappers as an interface between the library and Fortran code that invokes its functions. These
wrappers are contained within ’wfdbf.c’, provided in the ’fortran’ directory of the WFDB software pack-
age. When the WFDB Software Package is installed, a copy of ’wfdbf.c’ is placed in the same directory as
’wfdb.h’ (normally, /usr/include/wfdb).

Most of these wrapper subroutines behave like their similarly-named counterparts in the WFDB library.
The functions setanninfo, setsiginfo, and getsiginfo do not have direct equivalents in the WFDB library;
they are provided in order to permit Fortran programs to read and write data structures passed to and from
several of the WFDB library functions. Since the contents of these structures are directly accessible by C
programs, these functions are not needed in the C library.

Before using annopen, set up the annotation information structures using setanninfo. After using isigopen
or osigopen, use getsiginfo to obtain the contents of the signal information structures if necessary. Before
using osigfopen or setheader, use setsiginfo to set the contents of the signal information structures. Before
using wfdbinit, use setanninfo and setsiginfo to set the contents of the annotation and signal information
structures.

To use these wrappers, call them as shown above, then compile your code together with wfdbf.c and link to
the WFDB library. If you are using the GNU g77 compiler (recommended), do so using a command such
as:

g77 -o foo foo.f -DFIXSTRINGS /usr/include/wfdb/wfdbf.c -lwfdb
The wrappers include optionally compiled code that converts traditional space-terminated Fortran strings to
null-terminated C strings and vice versa. This code is compiled if the symbol FIXSTRINGS is defined, as
in the g77 command above. If you use a different Fortran compiler, this code may not be necessary. See
’fortran/README’ for further information about using the WFDB Fortran wrappers.

SEE ALSO
WFDB Programmer’s Guide

On systems that support GNU emacs, the Guide may be available on-line using emacs info; from
within emacs, type control-H followed by i to find out. An HTML version may be installed on
your system (in /usr/help/html/wpg); the most recent version can be viewed on-line at
http://www.physionet.org/physiotools/wpg/.

AUTHOR
George B. Moody (george@mit.edu)

SOURCES
http://www.physionet.org/physiotools/wfdb/fortran/wfdbf.c

140 3 November 2017 WFDB 10.6.0

ANNOT(5) WFDB Applications Guide ANNOT(5)

NAME
annot − WFDB annotation file formats

SYNOPSIS
#include <wfdb/ecgcodes.h>

DESCRIPTION
Programs compiled with the WFDB library (-lwfdb) can read annotation files in two formats. The pre-
ferred format (MIT format) is compact (averaging slightly over two bytes per annotation) and extensible,
and is normally used for on-line annotation files. The alternative format (AHA DB distribution format)
uses 16 bytes per annotation, and is normally used only for exchange of files between institutions on
9-track tape. Both formats are binary, but readable on any machine without reformatting. WFDB library
applications can distinguish between the formats automatically when opening a file for input.

MIT format:
Each annotation occupies an even number of bytes. The first byte in each pair is the least significant byte.
The six most significant bits (A) of each byte pair are the annotation type code, and the ten remaining bits
(I) specify the time of the annotation, measured in sample intervals from the previous annotation (or from
the beginning of the record for the first annotation). If 0 < A <= ACMAX, then A is defined in <wfdb/ecg-
codes.h>. Sev eral other possibilities exist:

A = SKIP [59.]
I = 0; the next four bytes are the interval in PDP-11 long integer format (the high 16 bits first, then
the low 16 bits, with the low byte first in each pair).

A = NUM [60.]
I = annotation num field for current and subsequent annotations; otherwise, assume previous
annotation num (initially 0).

A = SUB [61.]
I = annotation subtyp field for current annotation only; otherwise, assume subtyp = 0.

A = CHN [62.]
I = annotation chan field for current and subsequent annotations; otherwise, assume previous chan
(initially 0).

A = AUX [63.]
I = number of bytes of auxiliary information (which is contained in the next I bytes); an extra null,
not included in the byte count, is appended if I is odd.

A = I = 0: End of file.

AHA format:
All annotations occupy exactly 16 bytes. Within each block, the first byte is unused, the second byte con-
tains the AHA annotation code (an ASCII character; see <wfdb/ecgmap.h>), the third through sixth bytes
contain the time (see below) in PDP-11 long integer format as above, and the seventh and eighth bytes con-
tain an annotation serial number.

In annotation files taken directly from the AHA database distribution tapes, the last eight bytes in each
annotation are unused, and the time is given in milliseconds measured from the beginning of the annotated
segment of the record. In AHA-format annotation files generated by WFDB library applications, annota-
tion times are given in sample intervals from the beginning of the record, and the last eight bytes of each
annotation contain the MIT annotation subtype (in the ninth byte), the MIT annotation code (in the tenth
byte), and up to six ASCII characters (in the remaining bytes) used to describe RHYTHM and NOTE
annotations.

SEE ALSO
header(5), signal(5), wfdbcal(5)
WFDB Programmer’s Guide

WFDB software 10.2.7 1 August 2002 141

ANNOT(5) WFDB Applications Guide ANNOT(5)

AUTHOR
George B. Moody (george@mit.edu). The original MIT annotation format was designed by Paul Schluter,
and the AHA annotation format was designed by Russ Hermes.

142 1 August 2002 WFDB software 10.2.7

HEADER(5) WFDB Applications Guide HEADER(5)

NAME
header − WFDB header file format

DESCRIPTION
For each database record, a header file specifies the names of the associated signal files and their attributes.
Programs compiled with the WFDB library (-lwfdb) can read header files created by newheader (see
wfdb(3)). Header files contain line- and field-oriented ASCII text. ASCII linefeed characters separate
lines (which may not contain more than 255 characters each, including the linefeed), and spaces or tabs
separate fields (except as noted below). Beginning with WFDB library version 6.1, an ASCII carriage
return character may precede each linefeed. Fields not specifically designated below as optional must be
present.

Header files contain at a minimum a record line, which specifies the record name, the number of segments,
and the number of signals. Header files for ordinary records (those that contain one segment) also contain a
signal specification line for each signal. Header files for multi-segment records (supported by WFDB
library version 9.1 and later versions) contain a segment specification line for each segment; see the section
on multi-segment records below for details.

Comment lines may appear anywhere in a header file. The first printing character in a comment line must
be ‘#’. Comment lines that follow the last signal specification line are treated specially (see Info strings,
below). All other comment lines are ignored by WFDB library functions that read header files.

Record line
The first non-empty, non-comment line is the record line. It contains information applicable to all signals
in the record. Its fields are, from left to right:

record name

A string of characters that identify the record. The record name may include letters, digits and
underscores (‘_’) only.

number of segments [optional]
This field, if present, is not separated by whitespace from the record name field; rather, it follows
a ‘/’, which serves as a field separator. If the field is present, it indicates that the record is a multi-
segment record containing the specified number of segments, and that the header file contains seg-
ment specification lines rather than signal specification lines. The number of segments must be
greater than zero. A value of 1 in this field is legal, though unlikely to be useful.

number of signals

Note that this is not necessarily equal to the number of signal files, since two or more signals can
share a signal file. This number must not be negative; a value of zero is legal, however.

sampling frequency (in samples per second per signal) [optional]
This number can be expressed in any format legal for scanf(3) input of floating point numbers
(thus ‘360’, ‘360.’, ‘360.0’, and ‘3.6e2’ are all legal and equivalent). The sampling frequency
must be greater than zero; if it is missing, a value of 250 (DEFREQ, defined in <wfdb/wfdb.h>)
is assumed.

counter frequency (in ticks per second) [optional]
This field (a floating-point number, in the same format as the sampling frequency) can be present
only if the sampling frequency is also present. It is not separated by whitespace from the sampling
frequency field; rather, it follows a ‘/’, which serves as a field separator. The sampling and counter
frequencies are used by strtim to convert strings beginning with ‘c’ into sample intervals. Typi-
cally, the counter frequency may be derived from an analog tape counter, or from page numbers in
a chart recording. If the counter frequency is absent or not positive, it is assumed to be equal to
the sampling frequency. WFDB library versions 5.1 and earlier ignore the counter frequency field.

base counter value [optional]
This field can be present only if the counter frequency is also present. It is not separated by white-
space from the counter frequency field; rather, it is surrounded by parentheses, which delimit it.
The base counter value is a floating-point number that specifies the counter value corresponding to

WFDB software 10.3.18 5 August 2005 143

HEADER(5) WFDB Applications Guide HEADER(5)

sample 0. If absent, the base counter value is taken to be zero. WFDB library versions 5.1 and
earlier ignore the base counter value field.

number of samples per signal [optional]
This field can be present only if the sampling frequency is also present. If it is zero or missing, the
number of samples is unspecified and checksum verification of the signals is disabled.

base time [optional]
This field can be present only if the number of samples is also present. It gives the time of day
that corresponds to the beginning of the record, in HH:MM:SS format (using a 24-hour clock; thus
13:05:00, or 13:5:0, represent 1:05 pm). If this field is absent, the time-conversion functions
assume a value of 0:0:0, corresponding to midnight.

base date [optional]
This field can be present only if the base time is also present. It contains the date that corresponds
to the beginning of the record, in DD/MM/YYYY format (e.g., 25/4/1989 is 25 April 1989).

Signal specification lines
Each non-empty, non-comment line following the record line in a single-segment record contains specifica-
tions for one signal, beginning with signal 0. Header files must contain valid signal specification lines for
at least as many signals as were indicated in the record line (the first non-empty, non-comment line in the
file). Any extra signal specification lines are not read by WFDB library functions. From left to right in
each line, the fields are:

file name

The name of the file in which samples of the signal are kept. The environment variable WFDB
(the database path) lists the directories in which signal files (as well as WFDB header and annota-
tion files) are found; normally WFDB should include an initial empty component, so that signal
files can be kept in any directory if they are designated by absolute path names in the header file.
If the file name specifies that the signal file is to be found in a directory that is not already in
WFDB, that directory is appended to the end of WFDB (by functions that read header files in
WFDB library version 6.2 and later versions). Although the record name is usually part of the sig-
nal file name, this convention is not a requirement (see, e.g., examples 3, 4, and 5 below). Note
that several signals can share the same file (i.e., they can belong to the same signal group); all
entries for signals that share a given file must be consecutive, howev er. The file name ‘-’ refers to
the standard input or output. The sum of the lengths of the file name and description fields (see
below) is limited to 80 characters.

format This field is an integer that specifies the storage format of the signal. All signals in a given group
are stored in the same format. The most common formats are format 8 (eight-bit first differences)
and format 16 (sixteen-bit amplitudes); see signal(5) (or <wfdb/wfdb.h>) for a list of other sup-
ported formats. The following three optional fields, if present, are bound to the format field (i.e.,
not separated from it by whitespace); they may be considered as format modifiers, since they fur-
ther describe the encoding of samples within the signal file.

samples per frame [optional]
If present, this field follows an ‘x’ that serves as a field separator. Normally, all signals in a given
record are sampled at the (base) sampling frequency as specified in the record line; in this case,
the number of samples per frame is 1 for all signals, and this field is conventionally omitted. If the
signal was sampled at some integer multiple, n, of the base sampling frequency, howev er, each
frame (set of samples returned by getframe) contains n samples of the signal, and the value speci-
fied in this field is also n. (Note that non-integer multiples of the base sampling frequency are not
supported.) WFDB library versions 8.3 and earlier ignore this field if it is present, and cannot
properly read signal files that contain more than one sample per signal per frame.

skew [optional]
If present, this field follows a ‘:’ that serves as a field separator. Ideally, within a given record,
samples of different signals with the same sample number are simultaneous (within one sampling
interval). If this is not the case (as, for example, when a multitrack analog tape recording is

144 5 August 2005 WFDB software 10.3.18

HEADER(5) WFDB Applications Guide HEADER(5)

digitized and the azimuth of the playback head does not match that of the recording head), the
skew between signals can sometimes determined (for example, by locating recorded wav eform
features with known time relationships, such as calibration signals). If this has been done, the
skew field may be inserted into the header file to indicate the (positive) number of samples of the
signal that are considered to precede sample 0. These samples, if any, are included in the check-
sum, but cannot be returned by getvec or getframe (thus the checksum need not be changed if the
skew field is inserted or modified). WFDB library versions 9.1 and earlier ignore this field if it is
present; later versions correctly deskew signals in accordance with the contents of this field.

byte offset [optional]
If present, this field follows a ‘+’ that serves as a field separator. Normally, signal files include
only sample data. If a signal file includes a preamble, however, this field specifies the offset in
bytes from the beginning of the signal file to sample 0 (i.e., the length of the preamble). Data
within the preamble is not included in the signal checksum. Note that the byte offset must be the
same for all signals within a given group (use the skew field to correct for intersignal skew). This
feature is provided only to simplify the task of reading signal files not generated using the WFDB
library; the WFDB library does not support any means of writing such files, and byte offsets must
be inserted into header files manually. WFDB library versions 4.4 and earlier ignore byte offsets;
these versions return any preamble data as samples.

ADC gain (ADC units per physical unit) [optional]
This field is a floating-point number that specifies the difference in sample values that would be
observed if a step of one physical unit occurred in the original analog signal. For ECGs, the gain
is usually roughly equal to the R-wav e amplitude in a lead that is roughly parallel to the mean car-
diac electrical axis. If the gain is zero or missing, this indicates that the signal amplitude is uncali-
brated; in such cases, a value of 200 (DEFGAIN, defined in <wfdb/wfdb.h>) ADC units per phys-
ical unit may be assumed.

baseline (ADC units) [optional]
This field can be present only if the ADC gain is also present. It is not separated by whitespace
from the ADC gain field; rather, it is surrounded by parentheses, which delimit it. The baseline is
an integer that specifies the sample value corresponding to 0 physical units. If absent, the baseline
is taken to be equal to the ADC zero. Note that the baseline need not be a value within the ADC
range; for example, if the ADC input range corresponds to 200−300 degrees Kelvin, the baseline
is the (extended precision) value that would map to 0 degrees Kelvin. WFDB library versions 5.0
and earlier ignore baseline fields.

units [optional]
This field can be present only if the ADC gain is also present. It follows the baseline field if that
field is present, or the gain field if the baseline field is absent. It is not separated by whitespace
from the previous field; rather, it follows a ‘/’, which serves as a field separator. The units field is
a character string without embedded whitespace that specifies the type of physical unit. If the
units field is absent, the physical unit may be assumed to be one millivolt. WFDB library versions
4.7 and earlier ignore units fields.

ADC resolution (bits) [optional]
This field can be present only if the ADC gain is also present. It specifies the resolution of the
analog-to-digital converter used to digitize the signal. Typical ADCs have resolutions between 8
and 16 bits. If this field is missing or zero, the default value is 12 bits for amplitude-format sig-
nals, or 10 bits for difference-format signals (unless a lower value is specified by the format field).

ADC zero [optional]
This field can be present only if the ADC resolution is also present. It is an integer that represents
the amplitude (sample value) that would be observed if the analog signal present at the ADC
inputs had a level that fell exactly in the middle of the input range of the ADC. For a bipolar
ADC, this value is usually zero, but a unipolar (offset binary) ADC usually produces a non-zero
value in the middle of its range. Together with the ADC resolution, the contents of this field can
be used to determine the range of possible sample values. If this field is missing, a value of zero is

WFDB software 10.3.18 5 August 2005 145

HEADER(5) WFDB Applications Guide HEADER(5)

assumed.

initial value [optional]
This field can be present only if the ADC zero is also present. It specifies the value of sample 0 in
the signal, but is used only if the signal is stored in difference format. If this field is missing, a
value equal to the ADC zero is assumed.

checksum [optional]
This field can be present only if the initial value is also present. It is a 16-bit signed checksum of
all samples in the signal. (Thus the checksum is independent of the storage format.) If the entire
record is read without skipping samples, and the header’s record line specifies the correct number
of samples per signal, this field is compared against a computed checksum to verify that the signal
file has not been corrupted. A value of zero may be used as a field placeholder if the number of
samples is unspecified.

block size [optional]
This field can be present only if the checksum is present. This field is an integer and is usually
zero. If the signal is stored in a file that must be read in blocks of a specific size, however, this
field specifies the block size in bytes. (On UNIX systems, this is the case only for character spe-
cial files, corresponding to certain tape and raw disk files. If necessary, the block size may be given
as a negative number to indicate that the associated file lacks I/O driver support for fseek(3) opera-
tions.) All signals belonging to the same signal group have the same block size.

description [optional]
This field can be present only if the block size is present. Any text between the block size field
and the end of the line is taken to be a description of the signal. When creating new records, fol-
low the style used to document the signals in existing header files. Unlike the other fields in the
header file, the description may include embedded spaces; note that whitespace between the block
size and description fields is not considered to be part of the description, however. If the descrip-
tion is missing, the WFDB library functions that read header files supply a description of the form
’record rec, signal n’ (shortened to ’signal n’ by many WFDB applications).

Info strings
Comment lines that follow the last signal specification line in a header file can be read and written by the
WFDB library functions getinfo and putinfo; the contents of these lines (excluding the initial ‘#’ comment
character) are referred to as ‘info strings’. There must be no whitespace preceding the initial ‘#’ in any line
that is to be recognized by getinfo.

Multi-segment records
Each non-empty, non-comment line following the record line in the top-level header file of a multi-segment
record contains specifications for one segment, beginning with segment 0. (Info strings cannot be used in
the top-level header file of a multi-segment record.) Top-level header files must contain valid segment
specification lines for at least as many segments as were indicated in the record line. Any extra segment
specification lines are not read by WFDB library functions.

A segment is simply an ordinary (single-segment) record, with its own header and signal files. By includ-
ing segments in a multi-segment record, the signals within them can be read by WFDB applications as if
they were continuous signals, beginning with those in segment 0 and continuing with those in segment 1,
with no need for the applications to do anything special to move from one segment to another. The only
restrictions are that segments cannot themselves contain other segments (they must be single-segment
records), the sampling frequencies must not change from segment to segment, and the number of samples
per signal must be defined for each segment in the record line of the segment’s own header file.

Tw o types of multi-segment records are defined. In a fixed-layout record, the arrangement of signals is con-
stant across all segments, and the signal gain, baseline, units, ADC resolution and zero, and description
match for corresponding signals in all segments (these recommendations are not enforced by the WFDB
library, but existing applications are likely to behave unpredictably if they are not followed). Note, how-
ev er, that it is not necessary to use the same signal storage format in all segments, and significant space sav-
ings may be possible in some cases by selecting an optimal format for each segment. Each segment of a

146 5 August 2005 WFDB software 10.3.18

HEADER(5) WFDB Applications Guide HEADER(5)

fixed-layout record is an ordinary record containing one or more samples.

In a variable-layout record, the arrangement of signals may vary, signals may be absent in some segments,
and the gains and baselines may change between segments. A variable-layout record can be identified by
the presence of a layout segment, which must be segment 0 and must have a length of 0 samples. The lay-
out segment has no associated signal files; its header file specifies the desired arrangement of signals and
their gains and baselines. Signal file names in a layout segment header are recorded as ‘˜’. When read
using WFDB library version 10.3.17 or later, the signals of a variable layout record are rearranged, shifted,
and rescaled as needed in order to present the signals in the arrangement and with the gains and baselines
specified in the layout segment header.

Segment specification lines
Each segment specification line contains the following fields, separated by whitespace:

record name

A string of characters identifying the single-segment record that comprises the segment. As in the
record line, the record name may include letters, digits, and underscores (‘_’) only.

number of samples per signal

This number must match the number specified in the header file for the single-segment record that
comprises the segment.

Variable-layout records may contain null segments, which can be identified if the record name given in the
segment specification line is ‘˜’. The number of samples per signal indicates the length of the null segment;
when read, these samples have the value WFDB_INVALID_DAT A (defined in <wfdb/wfdb.h>). Null seg-
ments do not have associated header or signal files.

Examples:
Example 1 (MIT DB record 100):

100 2 360 650000 0:0:0 0/0/0
100.dat 212 200 11 1024 995 -22131 0 MLII
100.dat 212 200 11 1024 1011 20052 0 V5

69 M 1085 1629 x1
Aldomet, Inderal

This header specifies 2 signals each sampled at 360 Hz, each 650000 samples (slightly over 30 minutes)
long. The starting time and date were not recorded; in the example, the defaults are shown, but they might
be omitted without changing the meaning of the header file. Each signal is stored in 12-bit bit-packed for-
mat (2 samples per 3 bytes; see signal(5) for details), and one file contains both signals. Since the filename
given (100.dat) does not include path information, WFDB library-based programs will find the signal file
only if it is located in one of the directories specified by the WFDB environment variable. The gain for
each signal was the (default) 200 ADC units per millivolt (the default physical unit), and the ADC had
11-bit resolution and an offset such that its output was 1024 ADC units given an input exactly in the middle
of its range. The baseline is not given explicitly, but may be assumed to be equal to the ADC zero value of
1024. The first samples acquired had values of 995 and 1011 (i.e., both signals began slightly below 0
VDC). The checksums of the 650000 samples are -22131 and 20052, and I/O may be performed in blocks
of any desired size (since the block size fields are zero). The signal descriptions specify which leads were
used (MLII: modified lead II). Finally, the last two lines contain ‘info strings’. (In this example, the first
info string specifies the sex and age of the subject and data about the recording, and the second lists the
subject’s medications. The contents and format of info strings vary between databases; it is not wise to rely
on the presence of specific data in info strings, since their use in header files is optional.)

Example 2 (AHA DB record 7001):

7001 2 250 525000
/db1/data0/d0.7001 8 100 10 0 -53 -1279 0 ECG signal 0
/db1/data1/d1.7001 8 100 10 0 -69 15626 0 ECG signal 1

This header illustrates how on-line AHA DB records were formerly kept at MIT. Note that the sampling
frequency and ADC specifications differ from the previous example. In this example, each signal is kept in

WFDB software 10.3.18 5 August 2005 147

HEADER(5) WFDB Applications Guide HEADER(5)

its own signal file, specified by its absolute pathname. As shown here, AHA DB records may be kept in
8-bit first difference format, but the sampling rate requires that the signals be scaled down (from 12-bit to
10-bit ADC resolution) to stay within the slew rate limits imposed by the format. Note that signal check-
sums (-1279 and 15626 in this example) are derived from the reconstructed sample values, and not from the
first differences; thus they should not change if the signals are reformatted.

Example 3 (Local record 8l):

8l 16
data0 8
data1 8
...
data15 8

This example illustrates how relative pathnames can be used for user-created records. If data* files in the
proper format are created in any of the directories named by the WFDB environment variable, they become
the signal files for record 8l.

Example 4 (Piped record 16x4):

Piped record 16x4. Use this record to read or write 4 signals
using the standard I/O.
16x4 4
- 16
- 16
- 16
- 16

This example illustrates several features not seen in the earlier examples. The special file name ‘-’ means
that samples will be read from the standard input or written to the standard output when using this record.
All four signals are associated with the same file. The signals are kept in 16-bit amplitude format. The
example includes two comment lines, which are ignored by the WFDB library functions that read header
files.

Example 5 ("ahatape" header file):

Use this record on a UNIX system to read directly
from a 9-track AHA DB distribution tape with
4096-byte blocks. The tape must be positioned
to the beginning of the ECG data file before
using this record.

ahatape 2 250
/dev/nrmt0 16 0 12 0 0 0 4096
/dev/nrmt0 16 0 12 0 0 0 4096

As in the previous example, both signals are associated with the same file; in this case, the file is
/dev/nrmt0, the non-rewinding raw 9-track tape drive (on some systems, the name of this device may dif-
fer). The block size must be specified in this case, since I/O to or from a raw device (character special file)
is not buffered by the operating system and must be performed in the units appropriate to the device (in this
case, the tape block size). AHA DB tapes written at 1600 bpi contain 4096 bytes per block (i.e., 1024 two-
byte samples from each of the two signals).

Example 6 ("multi" header file):

multi/3 2 360 45000
100s 21600
null 1800
100s 21600

This header file is a sample of a multi-segment record. The first line contains the record name ("multi"),
the number of segments (there are 3), the number of signals (2; this must be the same in each segment), the
sampling frequency (360), and the total length of the record in sample intervals (45000; this must be the

148 5 August 2005 WFDB software 10.3.18

HEADER(5) WFDB Applications Guide HEADER(5)

sum of the segment lengths).

The second line contains the record name ("100s") of the first segment of the record, and its length in sam-
ple intervals (21600). The third and fourth lines contain the record names and lengths of the remaining seg-
ments. The remaining lines are comments.

Note that a segment may appear more than once in a multi-segment record, as in this sample, and that stor-
age formats may vary between segments (the second segment is a "null" record, containing format 0 "sig-
nals", and the others are written in format 8).

This record may be read by any WFDB application built using WFDB library version 9.1 or later; the
application need not be aware that this is a multi-segment record. Earlier versions of the WFDB library do
not support multi-segment records (or format 0 signals).

Old format
Versions 2.3 through 4.6 of the WFDB library included support for reading header files written in an obso-
lete format. This support has been removed from WFDB library version 5.0. Obsolete-format header files
can be brought up-to-date using re vise (in the convert directory of the WFDB software distribution).

SEE ALSO
annot(5), signal(5), wfdbcal(5)
WFDB Programmer’s Guide

AUTHOR
George B. Moody (george@mit.edu)

WFDB software 10.3.18 5 August 2005 149

SIGNAL(5) WFDB Applications Guide SIGNAL(5)

NAME
signal − WFDB signal file formats

DESCRIPTION
WFDB signal files exist in several formats. Any of these formats can be used for multiplexed signal files,
in which samples from two or more signals are stored alternately. See header(5) for information on how to
identify which of the formats below is used for a particular signal file.

Format 8
Each sample is represented as an 8-bit first difference; i.e., to get the value of sample n, sum the first n

bytes of the sample data file together with the initial value from the header file. When format 8 files are
created, first differences which cannot be represented in 8 bits are represented instead by the largest differ-
ence of the appropriate sign (-128 or +127), and subsequent differences are adjusted such that the correct
amplitude is obtained as quickly as possible. Thus there may be loss of information if signals in another of
the formats listed below are converted to format 8. Note that the first differences stored in multiplexed for-
mat 8 files are always determined by subtraction of successive samples from the same signal (otherwise sig-
nals with baselines which differ by 128 units or more could not be represented this way).

Format 16
Each sample is represented by a 16-bit two’s complement amplitude stored least significant byte first. Any
unused high-order bits are sign-extended from the most significant bit. Historically, the format used for
MIT−BIH and AHA database distribution 9-track tapes was format 16, with the addition of a logical EOF
(octal 0100000) and null-padding after the logical EOF.

Format 24
Each sample is represented by a 24-bit two’s complement amplitude stored least significant byte first.

Format 32
Each sample is represented by a 32-bit two’s complement amplitude stored least significant byte first.

Format 61
Each sample is represented by a 16-bit two’s complement amplitude stored most significant byte first.

Format 80
Each sample is represented by an 8-bit amplitude in offset binary form (i.e., 128 must be subtracted from
each unsigned byte to obtain a signed 8-bit amplitude).

Format 160
Each sample is represented by a 16-bit amplitude in offset binary form (i.e., 32,768 must be subtracted
from each unsigned byte pair to obtain a signed 16-bit amplitude). As for format 16, the least significant
byte of each pair is first.

Format 212
Each sample is represented by a 12-bit two’s complement amplitude. The first sample is obtained from the
12 least significant bits of the first byte pair (stored least significant byte first). The second sample is
formed from the 4 remaining bits of the first byte pair (which are the 4 high bits of the 12-bit sample) and
the next byte (which contains the remaining 8 bits of the second sample). The process is repeated for each
successive pair of samples. Most of the signal files in PhysioBank are written in format 212.

Format 310
Each sample is represented by a 10-bit two’s-complement amplitude. The first sample is obtained from the
11 least significant bits of the first byte pair (stored least significant byte first), with the low bit discarded.
The second sample comes from the 11 least significant bits of the second byte pair, in the same way as the
first. The third sample is formed from the 5 most significant bits of each of the first two byte pairs (those
from the first byte pair are the least significant bits of the third sample). Note that the unused bit in each
byte pair is set to zero when using the WFDB library to write a format 310 signal file. The entire process is
then repeated for each successive set of three samples.

Format 311
Each sample is represented by a 10-bit two’s-complement amplitude. Three samples are bit-packed into a
32-bit integer as for format 310, but the layout is different. Each set of four bytes is stored in little-endian

150 1 March 2010 WFDB software 10.5.0

SIGNAL(5) WFDB Applications Guide SIGNAL(5)

order (least significant byte first, most significant byte last). The first sample is obtained from the 10 least
significant bits of the 32-bit integer, the second is obtained from the next 10 bits, the third from the next 10
bits, and the two most significant bits are unused (note that these bits are set to zero when using the WFDB
library to write a format 311 signal file). This process is repeated for each successive set of three samples.

If the format specifies a number of bits per sample that exceeds the number of bits in a WFDB_Sample,
the excess high bits are not read on input, and they are replaced by zeroes on output. Currently, this can
happen only when using formats 24 or 32 on a 16-bit platform (unusual except for embedded processors);
in this case, the WFDB_Sample data type may be redefined as long (in wfdb/wfdb.h) before compiling the
WFDB library and applications, to enable full-precision processing of signals in all formats. This is not
done by default since it would increase memory and computational requirements unnecessarily in embed-
ded applications that do not require 24- or 32-bit precision.

SEE ALSO
annot(5), header(5), wfdbcal(5)
WFDB Programmer’s Guide

AUTHOR
George B. Moody (george@mit.edu)

WFDB software 10.5.0 1 March 2010 151

WFDBCAL(5) WFDB Applications Guide WFDBCAL(5)

NAME
wfdbcal − WFDB calibration file format

DESCRIPTION
Programs compiled using the WFDB library (see wfdb(3)) require calibration data in order to convert
between sample values (expressed in analog-to-digital converter units, or adus) and physical units. Calibra-
tion files specify the physical characteristics of calibration pulses that may be present in various types of
signals, and specify customary scales for plotting these signals. calsig(1) reads the signal file(s) for a
record, measures the size of the calibration pulses it finds in adus, and uses specifications from a calibration
file to determine adu-to-physical unit conversion parameters, the ‘gain’ and ‘baseline’ fields that it writes
back into the header file for the record. Other programs, such as pschart(1), make use of the ‘gain’ and
‘baseline’ fields from the header file to determine how to convert adus into physical units, and use custom-
ary scale specifications from a calibration file to determine how to convert physical units into units of
length on a printed page or on-screen. Most users will find that a single calibration file, perhaps a system-
wide default, can be used with all of their WFDB records.

Calibration files are line-oriented text files. Lines are separated by a carriage-return/line-feed pair. Each
type of signal to be calibrated is described by a one-line entry. The format of each entry is:

DESC<tab>LOW HIGH TYPE SCALE UNITS
where DESC is a string, possibly containing embedded spaces but not tabs, taken from the signal descrip-
tion field of the header file entry for signals of the desired type; LOW and HIGH are the physical measure-
ments that correspond to the low- and high-amplitude phases of the calibration pulse; TYPE specifies the
shape of the calibration pulse (‘sine’, ‘square’, or ‘undefined’); SCALE specifies the customary scale in
physical units per centimeter; and UNITS is a string (without embedded whitespace) that specifies the
physical units of the signal (e.g., ‘mV’, ‘mmHg’, ‘degrees_Celsius’). If LOW is ‘-’, the signal is AC-cou-
pled, and HIGH is taken as the peak-to-peak amplitude of the calibration pulse. LOW must be defined
(i.e., must not be ‘-’) for DC-coupled signals. If HIGH is ‘-’, the size of the calibration pulse is undefined.

Lines that begin with ‘#’, empty lines, and improperly formatted lines are treated as comments and ignored.

The WFDB library function getcal, used by programs such as calsig(1), psfd(1), and wave(1) to obtain cal-
ibration data from a calibration file, returns the first entry that matches a signal’s description and units. A
calibration file entry is considered to match a signal if the DESC field is either an exact match or a prefix of
the signal description as given in the header file, and if the UNITS field in the calibration file is an exact
match of the units field in the header file. By making use of these two rules, it is possible to write a calibra-
tion file that contains entries for several specific cases followed by a ‘catch-all’ case for which the DESC
field contains only the common prefix.

Note that SCALE specifications are advisory, not mandatory. The intended use of SCALE is to specify the
customary size for signals, and the relative sizes of signals of varying types. When determining a SCALE
for a signal type for which there is no customary scale, a good rule of thumb is that the typical short-term
range of variation of the plotted signal should be on the order of one centimeter; keep in mind that it may
be useful to make measurements on plots, however, and choose a scale that makes such measurements easy
to perform. Programs that draw signals at non-standard scales should generally adjust the scales for all sig-
nals by the same factor, unless the user specifies otherwise.

Examples
A simple example of a WFDB calibration file
ECG - 1 sine 1 mV
NBP 0 100 square 100 mmHg
IBP 0 - square 100 mmHg
Resp - - undefined 1 l

In this example, the first line is a comment. The second line specifies that signals whose descriptions begin
with ‘ECG’ are AC-coupled, have units of millivolts (mV), have 1 mV (peak-to-peak) sine-wav e calibration
signals, and are customarily drawn at a scale of 1 mV/cm. The third line specifies that signals of the ‘NBP’
type are DC-coupled, have units of millimeters of mercury (mmHg), square-wav e calibration signals that go
from 0 to 100 mmHg, and are customarily drawn at a scale of 100 mmHg/cm. The fourth line specifies that
signals of the ‘IBP’ type are DC-coupled (since LOW is specified), also have units of mmHg, and are

152 5 March 2004 WFDB software 10.3.12

WFDBCAL(5) WFDB Applications Guide WFDBCAL(5)

customarily drawn at a scale of 100 mmHg/cm, but that calibration pulses may vary in amplitude. The last
line specifies that ‘Resp’ signals are AC-coupled (since LOW is not specified), have calibration pulses of
variable size and shape, and have units of liters [l].

An entry of the form:
ECG lead I - 1 sine 1 mV

matches ‘ECG lead II’ as well as ‘ECG lead I’, because of the prefix rule (see above). If ‘ECG lead I’ and
‘ECG lead II’ were to require different calibrations for some reason, an entry of the form:

ECG lead II - 2 sine 1 mV
should be inserted before the entry for ‘ECG lead I’.

Programs that display time series extracted from annotation files (e.g., wave(1), which can display the
sequence of ‘num’ fields in an annotation file as a signal) can use calibration records to choose an ordinate
scale. These records can be included in the calibration file, with annotator names used in place of the signal
type, and ‘units’ as the units type. An entry with signal type "ann" can be used as a default for calibrating
data from files whose annotator names do not have entries. For example, the default calibration file con-
tains these entries:

edr - - undefined 200 units
ann - - undefined 100 units The first specifies that data from ’edr’ annotation files are to be dis-

played at a nominal 200 units per centimeter. The second specifies that files from other types of annotation
files are to be displayed at 100 units per centimeter.

ENVIRONMENT
Programs compiled with the WFDB library use the environment variable WFDBCAL to determine the
name of the calibration file. Calibration files must be located in one of the directories named by the WFDB
path (see setwfdb(1)).

SEE ALSO
calsig(1), setwfdb(1), annot(5), header(5). signal(5)
WFDB Programmer’s Guide

AUTHOR
George B. Moody (george@mit.edu)

WFDB software 10.3.12 5 March 2004 153

Installing the WFDB Software Package

George B. Moody
Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA

This appendix briefly describes how to install the WFDB Software Package on a new system. The package
includes C-language sources for the WFDB library and for most of the applications described in this manual, sources
for this manual, the WFDB Programmer’s Guide, and the WAVE User’s Guide, and a one-minute sample record
(100s).

The latest version of the package can always be downloaded in source form from http://physionet.org/-
physiotools/wfdb.shtml, the WFDB home page on PhysioNet. Binaries for popular operating systems and
development snapshots are also usually available there.

The process for installing the package is the same on all platforms, and is documented in detail in the quick-start
guides for the popular platforms that can be found on the WFDB home page. In brief:

1. Install any prerequisites needed for your platform. These include gcc (the GNU Compiler Collection),
related software development tools such as make, a supported HTTP client library (either libcurl or
libwww; this can be omitted if NETFILES support is not desired), the XView libraries (needed for WAVE
only), and X11 (needed by XView). All of these components are free (open-source) software available for all
popular platforms, including GNU/Linux, Mac OS X, MS Windows, and Unix. The quick start guides list
recommended packages and where to find them.

2. Download and unpack the WFDB Software Package. Versions for all platforms are built from a single package
of portable sources; the most recent package is always available at http://physionet.org/physio-
tools/wfdb.tar.gz.

3. Configure the package for your system. The configure script creates a customized building procedure for
your system and allows you a few choices about where to install the package.

4. Make and verify a test build. The package includes a set of test scripts that are run to verify basic operations
of the WFDB library and many of the applications, permitting them to be tested before installation.

5. Make, install, and test a final build.

See the quick start guide for your platform for detailed step-by-step instructions.
Important: Although you may be able to compile the WFDB Software Package using a proprietary compiler,

this is not supported.

155

Evaluating ECG Analyzers

George B. Moody
Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA

Summary

This paper describes how to evaluate an automated ECG analyzer using available annotated ECG databases and
software, in compliance with standard evaluation protocols. These protocols have been adopted as parts of the
American National Standard for Ambulatory Electrocardiographs (ANSI/AAMI EC38:1998, and its predecessor,
ANSI/AAMI EC38:1994), and the American National Standard for Testing and Reporting Performance Results
of Cardiac Rhythm and ST Segment Measurement Algorithms (ANSI/AAMI EC57:1998). They include earlier
evaluation protocols developed for an AAMI Recommended Practice, Testing and Reporting Performance Results of
Ventricular Arrhythmia Detection Algorithms (AAMI ECAR, 1987). It will be most useful to readers who plan to use
the suite of evaluation software included in the WFDB Software Package (http://www.physionet.org/-
physiotools/wfdb.shtml); this suite of software includes the reference implementations of the evaluation
protocols specified in EC38 and EC57.

1 Introduction

Continuous monitoring of the electrocardiogram in both inpatients and ambulatory subjects has become a very com-
mon procedure during the past thirty years, with diverse applications ranging from screening for cardiac arrhythmias
or transient ischemia, to evaluation of the efficacy of antiarrhythmic drug therapy, to surgical and critical care mon-
itoring. Since the first intensive care units were established in the 1960s, the need for automated data reduction
and analysis of the ECG has been apparent, motivated by the very large amount of data that must be analyzed (on
the order of 105 cardiac cycles per patient per day). As clinical experience has led to the identification of more
and more prognostic indicators in the ECG, clinicians have demanded and received increasingly sophisticated auto-
mated ECG analyzers. The early heart rate monitors rapidly evolved into devices that were designed first to detect
ventricular fibrillation, then other “premonitory” ventricular arrhythmias. Many newer devices attempt to detect
supraventricular arrhythmias and transient ischemic ST changes.

Visual analysis of the ECG is far from simple. Accurate diagnosis of ECG abnormalities requires attention to
subtle features of the signals, features that may appear only rarely, and which are often obscured by or mimicked
by noise. Diagnostic criteria are complicated by inter- and intra-patient variability of both normal and abnormal
ECG features. Given these considerations, it is not surprising that developers are faced with a difficult task in the
design of algorithms for automated ECG analysis, and that the results of their efforts are imperfect. Certain parts of
the problem — QRS detection in the absence of noise, for example — are well-solved by most current algorithms;
others — detection of supraventricular arrhythmias, for example — remain exceedingly difficult. Just as we may
find it easiest to analyze “textbook” examples, automated ECG analyzers may perform better while analyzing the
recordings used during their development than when applied to “real-world” signals.

Since automated ECG analyzers vary in performance, and since their performance is dependent on the charac-
teristics of their input, quantitative evaluations of these devices are essential in order to assess the usefulness of their
outputs. At one extreme, a device’s outputs in the context of a particular type of signal may be so unreliable as to
be worthless; unfortunately, the other extreme — an output so reliable it can be accepted uncritically — is not a
characteristic of any existing monitor, nor can it be expected in the future.

157

Evaluating ECG Analyzers WFDB Applications Guide Evaluating ECG Analyzers

1.1 ECG Databases
Several databases of ECG recordings are generally available for evaluating ECG analyzers. They serve several
important needs:

• They contain representative signals. Wide variations in ECG characteristics among subjects severely limit the
value of synthesized waveforms for testing purposes. Realistic tests of ECG analyzers require large sets of
“real-world” signals.

• They contain rarely observed but clinically significant signals. Although it is not particularly difficult to
obtain recordings of common ECG abnormalities, often those that are most significant are rarely recorded.
Both developers and evaluators of ECG analyzers need examples of such recordings.

• They contain standard signals. System comparisons are meaningless unless performance is measured using
the same test data in each case, since performance is so strongly data-dependent.

• They contain annotated signals. Typically, each QRS complex has been manually annotated by two or more
cardiologists working independently. The reference annotations produced as a result serve as a “gold standard”
against which a device’s analysis can be compared quantitatively.

• They contain digitized, computer-readable signals. It is therefore possible to perform a fully automated,
strictly reproducible test in the digital domain if desired, allowing one to establish with certainty the effects
of algorithm modifications on performance.

Standards EC38 and EC57 require the use of the following ECG databases:1

• AHA DB: The American Heart Association Database for Evaluation of Ventricular Arrhythmia Detectors (80
records, 35 minutes each)

• MIT DB: The Massachusetts Institute of Technology–Beth Israel Hospital Arrhythmia Database (48 records,
30 minutes each)

• ESC DB: The European Society of Cardiology ST-T Database (90 records, two hours each)

• NST DB: The Noise Stress Test Database (12 records, 30 minutes each)

• CU DB: The Creighton University Sustained Ventricular Arrhythmia Database (35 records, 8 minutes each)

Each of these databases represents a very substantial effort by many workers; in particular, the AHA, MIT, and ESC
databases each required more than five years of sustained effort by large teams of researchers and clinicians from
many institutions. Nevertheless, it should be recognized that even these databases do not fully represent the variety
of “real-world” ECGs observed in clinical practice. Although these databases permit standardized, quantitative,
automated, and fully reproducible evaluations of analyzer performance, it is risky to extrapolate from the results of
such evaluations to expectations of real-world performance. Such extrapolations can be particularly error-prone if
the evaluation data were also used for development of the analysis algorithm, since the algorithm may have been
(perhaps unintentionally) “tuned” to its training set. It should also be noted that the first four of the databases
listed above were obtained from Holter ECG recordings; although the frequency response of the Holter recording
technique is not usually a limiting factor in the performance of an ECG analyzer, it may tend to favor devices that are
designed to analyze Holter recordings over devices that have been designed to analyze higher-fidelity input signals.

1.2 Evaluation Protocols
Between 1984 and 1987, the Association for the Advancement of Medical Instrumentation (AAMI) sponsored the
development of a protocol for the use of the first two of these databases, which was published as an AAMI Rec-
ommended Practice.2 Between 1990 and 1998, the ambulatory ECG subcommittee of the AAMI ECG committee

1Sources: ECRI, 5200 Butler Pike, Plymouth Meeting, PA 19462 USA (AHA DB); PhysioNet (http://physionet.org/) (MIT, NST, CU DB;
and ESC DB for non-commercial use); Alessandro Taddei, CNR Institute of Clinical Physiology, G. Pasquinucci Heart Hospital, via Aurelia
Sud, 54100 Massa, Italy (ESC DB for commercial use).

2Testing and Reporting Performance Results of Ventricular Arrhythmia Detection Algorithms. Publication AAMI ECAR (1987); succeeded
by ANSI/AAMI EC57:1998, available from AAMI, 1110 N Glebe Road, Suite 220, Arlington, VA 22201 USA.

158 8 March 2019 WFDB 10.6.2

Evaluating ECG Analyzers WFDB Applications Guide Evaluating ECG Analyzers

developed and revised a standard for ambulatory ECG monitors, significant portions of which address the issue of the
accuracy of automated analysis performed by some of these devices.3 The ambulatory ECG standard EC38:1998,
and the “testing and reporting performance results” standard EC57:1998, build on the evaluation protocol adopted
for the earlier Recommended Practice (ECAR), incorporating provisions for the use of all five of the databases listed
above, with extensions for assessing detection of supraventricular arrhythmias and transient ischemic ST changes.
The standard breaks new ground in establishing specific reporting requirements for the performance of automated
ECG analyzers on standard tests using the databases listed above.

A significant constraint imposed on evaluators by the EC38 standard is that they must obtain annotation files
containing the analysis results of the device under test. Although the device itself need not produce these files,
EC38 specifically requires that they be produced by an automated procedure, which must be fully disclosed. The
intent of this requirement is to permit reproducible independent evaluations in which neither the proprietary data of
the developers (the analysis algorithms) nor that of the evaluators (the test signals and reference annotations) need
necessarily to be disclosed. By defining the interface between the developer and the evaluator to be the annotation
file, the responsibilities of each party are clearly defined: the developer must make certain that the device’s outputs
are recorded in the annotation file in the manner intended by the developer, but in the language of the standard;
the evaluator must make certain that the algorithms used to compare the device’s annotation files with the reference
annotation files conform to the specification of the standard. The format and content of these annotation files is
specified in detail below. For many existing devices, it may be difficult or impossible to obtain such annotation files
without the cooperation of the developers. Newly-designed devices should incorporate the necessary “hooks” for
producing annotation files.

1.3 Software to Support Evaluations
This paper describes a suite of programs that support evaluations of automated ECG analyzers in accordance with the
methods described in the EC38 and EC57 standards (as well as those in the earlier ECAR Recommended Practice).
These methods are sufficiently complex that the development of such a suite of programs is not an afternoon’s work.
By making generally available reference implementations of the evaluation algorithms, much needless duplication
of effort may be avoided. By circulating them in source form to other users, we may hope to find and correct
any bugs, with the eventual result that evaluators of devices should not have to bear the burden of evaluating the
evaluation technique itself. By using them for evaluations, any ambiguities in the English specification of the
evaluation algorithms are resolved in a consistent manner for each device tested. These programs are written in C
and run under MS-DOS or UNIX. They have been made available as part of the WFDB Software Package. In this
paper, the names of these programs are printed like this.

2 Evaluating an ECG Analyzer
The major task facing an evaluator is that of presenting the reference signals to the device under test, and collecting
annotation files from the device. The details of this task will vary for each device, but a few general hints are given
below. A second task, that of obtaining reference heart rate measurements, should be a much simpler job. Once
all of this information has been gathered, the remaining work required — that of comparing the device’s analysis
against the “gold standard” — can be performed automatically.

2.1 Presenting Signals to the Analyzer
Two distinctly different types of tests are possible. If the device can accept digital inputs, the reference signals
can be supplied in that form (perhaps after resampling with xform to convert the digitized samples to the expected
sampling frequency and numerical range, and possibly with additional digital signal processing to simulate the signal
conditioning normally performed by the device’s front-end data acquisition hardware). The primary advantage of
testing in the digital domain is that the test is (or should be) strictly reproducible, since no noise or additional
quantization error can be introduced in this way. This method usually avoids the issue of synchronization of the test
annotations with the reference signals discussed below.

3American National Standard for Ambulatory Electrocardiographs. Publication ANSI/AAMI EC38:1998; available from AAMI (address
above).

WFDB 10.6.2 8 March 2019 159

Evaluating ECG Analyzers WFDB Applications Guide Evaluating ECG Analyzers

Testing in the analog domain requires that analog signals be recreated from the digital signals. (It should be noted
that even the analog versions of the MIT and AHA databases that have been available in the past were recreated from
the digitized signals by the database developers.) The advantage of this approach is that it exercises the entire system,
including the front-end data acquisition hardware. It is often difficult, however, to establish synchronization between
the signal source and the analyzer, needed in order to permit comparisons of annotations. One way of dealing with
this problem is to arrange for the analyzer’s sampling clock to trigger the digital-to-analog converter used to recreate
the analog signals, or to arrange for an external clock to trigger both D/A conversion in the playback system and
A/D conversion in the analyzer. Another method is to begin and end the signal generation process by delivering
signals from the analyzer to the playback device, and recording the analyzer’s clock time at the times of the signals;
assuming that both the analyzer and the playback device have stable clocks, event times in the analyzer’s frame
of reference can be converted to database sample numbers by linear interpolation. The WFDB software package
includes a program (sample) that uses a Microstar DAP 2400-series analog interface board4 and an MS-DOS PC
to recreate analog signals from digital database records on CD-ROMs or magnetic disk files.

2.2 Obtaining Test Annotation Files

For any ambulatory ECG monitor that incorporates automated analysis functions, the EC-38 standard requires the
manufacturer to implement and disclose a method for producing test annotation files. Independent evaluators should
seek assistance from the manufacturer in any case, since the manufacturer’s interpretation of the device’s outputs in
the language of EC-38 is definitive (in effect, the annotation file generation technique becomes part of the system
under test). Note that generation of annotation files need not be synchronous with data acquisition; a device might
conceivably store all of the necessary data until the end of the test, and only then write the file. Neither does the
standard require that an annotation be determined within any fixed amount of time, as would be expected of devices
designed to trigger pacing, for example. Furthermore, EC-38 specifically allows for the possibility that the device
under test might not produce the annotation file directly. If any external hardware or software is required to do
so, however, it must be made generally available or specified in sufficient detail by the manufacturer to permit an
independent evaluator to obtain test annotation files.

Annotation files contain a label (an annotation) for each beat and for certain other features of the signals, such as
rhythm and ST changes. Annotations are stored in time order in annotation files. The “time” of an annotation is that
of the sample in the signal file with which the annotation is associated.5 The WFDB library (included in the WFDB
software package) includes C-callable functions (getann and putann) for reading and writing annotations. In a
C program, annotations appear as data structures containing a 32-bit time field together with a pair of 8-bit fields
that encode the annotation type and sub-type (anntyp and subtyp [sic], respectively), and a variable-length aux
field usually used to store text. In annotation files, these annotation structures are usually stored in a variable-length
bit-packed format averaging slightly more than 16 bits per annotation.6

Test annotation files may include the following:

• Beat annotations. These need not coincide precisely with the reference beat annotations, since the evaluation
protocol allows a time difference of up to 150 ms between each pair of matching beat annotations. All
beat annotations are mapped during the evaluation process into the set { N, V, F, S, Q } (corresponding to
normal, ventricular ectopic, ventricular fusion, supraventricular ectopic, and unclassifiable or paced beats
respectively); devices need not be capable of producing all of these annotations, but any beat annotations that
they do produce will be translated into one of these types. The standard specifies the mapping used for the
anntyp values defined in <wfdb/ecgcodes.h>. (This file is included in the WFDB Software Package.)
Any beat annotations that appear in the first five minutes of a record (the “learning period”) are ignored in the
evaluation process. The remainder of the record (the “test period”) must be fully annotated. Note in particular
that the last beat of some records may be very close to the last sample; since the analyzer may reach the end

4Source: Microstar Laboratories, http://www.mstarlabs.com/. External analog anti-aliasing filters (to reduce “staircasing”) and
attenuators (to obtain patient-level signals) may also be required, depending on the system to be evaluated. DAP boards can also be used with
sample to create new database records.

5Times in annotation and signal files are usually expressed as sample numbers (the number of samples in the signal file that precede the
sample in question).

6Test annotations that include heart rate or ST measurements require substantially more storage. getann and putann can also use the
original AHA DB format (containing fixed-length annotations, 16 bytes each), but this format should not be used for evaluations of devices that
incorporate ST analysis functions, since the space available for the aux data is too small to store ST measurements.

160 8 March 2019 WFDB 10.6.2

Evaluating ECG Analyzers WFDB Applications Guide Evaluating ECG Analyzers

of the input signals before producing an annotation for the last beat, it may be necessary to “pad” the input
data for a few seconds at the end of the record to permit the analyzer to emit its final beat annotation.

• Shutdown annotations. If the device suspends its analysis because of poor signal quality or for any other
reason, it should mark the periods during which analysis is suspended. The evaluation software tallies beats
missed during such periods separately from beats missed at other times. The beginning of each period of
shutdown may be marked using a NOISE annotation with subtyp = −1, and the end of each period of
shutdown may be marked using a NOISE annotation with subtyp = 0 (see the source for bxb for notes on
other acceptable methods of marking shutdown).

• Ventricular fibrillation annotations. The beginning and end of each detected episode of ventricular fibrillation
should be marked using VFON and VFOFF annotations.

• Other rhythm annotations. These should include RHYTHM annotations marking the beginning and end of each
detected episode of atrial fibrillation. The beginning of each episode should be marked with an “(AFIB”
rhythm annotation, i.e., an annotation with anntyp = RHYTHM and aux = "\05(AFIB", where “\05” is
C notation for a byte with the value 5 (ASCII control-E). Non-empty aux fields always begin with a byte that
specifies the number of data bytes that follow; in this case, the five characters ((A F I B) of the string.
The end of each episode should be marked with any other rhythm annotation (for example, "\02(N").

• Heart rate measurements. Each type of heart rate measurement (including any heart rate or RR interval vari-
ability measurements) made by the device under test should be assigned a measurement number, m, between
0 and 127. A MEASURE annotation should be recorded for each heart rate measurement, with subtyp = m
and with the measurement in the aux field, as an ASCII-coded decimal number.

• ST deviation measurements. If available, these should be provided in the aux fields of beat annotations, as
ASCII-coded decimal numbers indicating the deviations in microvolts from reference levels established for
each signal from the first 30 seconds of each record. For example, “25 -104” indicates a 25 µV elevation
in signal 0 and a 104 µV depression in signal 1. If ST measurements are omitted from any beat annotation,
the evaluation software assumes they are unchanged from their previous values.

• Ischemic ST change annotations. These STCH annotations should mark the beginning and end of each de-
tected episode of ischemic ST change. ST change annotations have additional information in the aux field as
for rhythm annotations: the beginning of each episode is marked by an “(STns” annotation, and the end of
each episode by a “STns)” annotation, where n indicates the signal affected (“0” or “1”), and s indicates ST
elevation (“+”) or depression (“-”). n may be omitted if the episode detection criteria depend on features of
both signals. The extremum of each episode may optionally be marked with an “ASTnsm” annotation, where
n and s are defined as above, and m is the ST deviation in microvolts, relative to a reference level established
as above.

• Comment annotations. Annotations with anntyp = NOTE and any desired string data in aux may be
included anywhere in an annotation file. NOTE annotations are ignored by the standard evaluation software;
they may be used, for example, to record the values of internal algorithm variables for debugging purposes.

Note that only beat annotations are absolutely required in test annotation files. ST deviation measurements within
beat annotations, and the other types of annotations listed above, only need to be recorded for devices that are
claimed by their manufacturers to provide optional features for detection of ventricular or atrial fibrillation, mea-
surement of ST deviations, or detection of ischemic ST changes.

If the time units in the test annotation files are not the same as those in the reference annotation files (for example,
because xform was used to change the sampling frequency of the signal files in a digital-domain test), the time
units must be rescaled before proceeding with the comparison. This may be done by using xform to rewrite the
test annotation files with the original sampling frequency.7

7The obvious alternative, using xform to rewrite the reference annotation files at the time the signal files are resampled, should not be used
in a formal evaluation. Because of the possibility that resampling the reference annotation files might result in moving reference annotations
into or out of the test period, or changing the lengths of episodes, doing so might produce results that could not be directly compared with those
obtained in a standard evaluation.

WFDB 10.6.2 8 March 2019 161

Evaluating ECG Analyzers WFDB Applications Guide Evaluating ECG Analyzers

Details of the ST deviation measurement and episode detection criteria used in producing the reference annota-
tion files for the ESC database may be found in several sources.8 Note, however, that many techniques for measuring
ST deviation and for detecting transient ischemic ST changes are possible, and that to date the best evaluation results
have been obtained for analyzers using criteria that do not attempt to mimic those used by the human experts who
annotated the database.

2.3 Obtaining Reference Heart Rate Data
The final step of preparation for the evaluation is to process the reference annotation files to obtain reference heart
rate annotation files. These files must contain heart rate measurement annotations with the same measurement
numbers assigned as for the test heart rate annotations; they need not necessarily contain beat or other annotations
from the reference annotation files. Quoting from EC38,

To evaluate the accuracy of heart rate measurement, the evaluator shall implement and disclose a method
for obtaining heart rate measurements using the reference annotation files (the ‘reference heart rate’).
This method need not be identical to the method used by the device under test, but in general it will be
advantageous if it matches that method as closely as possible.

It will generally be in the manufacturer’s interest to provide a program for generating reference heart rate annotation
files, to avoid the need for an independent evaluator to do so, with a likely result of less than optimal agreement
with the test heart rate measurements. The WFDB software package includes a sample implementation of such a
program (examples/refhr.c); note that it will need to be customized for each device to be tested.

Note that measurement errors are normalized by the mean value of the reference measurements in each record.
Be certain that this mean value cannot be zero!9

3 Comparing Annotation Files
Once the test annotation files and the reference heart rate annotation files have been obtained, the remainder of the
evaluation procedure is straightforward. All of the information needed to characterize the analysis performed by the
device under test is encoded in the test annotation files; similarly, all of the information needed to characterize the
actual contents of the test signals is encoded in the reference annotation and reference heart rate annotation files.
The evaluation procedure thus entails comparison of the test and reference annotation files for each record.

Four programs are provided in the WFDB Software Package for this purpose:

• bxb compares annotation files beat by beat; its output includes QRS, VEB, and (optionally) SVEB sensitivity
and positive predictivity, as well as RR interval error and shutdown statistics.

• rxr compares annotation files run by run; its output includes ventricular (and, optionally, supraventricular)
ectopic couplet, short run (3–5 beats), and long run (6 or more beats) sensitivity and positive predictivity.

• epicmp compares annotation files episode by episode; its output includes ventricular fibrillation, atrial fib-
rillation, and ischemic ST detection statistics as well as comparisons of ST deviation measurements.

• mxm compares measurements from a test annotation file and a reference heart rate annotation file; its output
indicates measurement error.10

The WFDB Software Package also includes three related programs:

8See, for example, the European ST-T Database Directory, pp. vi-vii, supplied with the ESC DB; or Taddei, A., et al., “The European ST-T
database: development, distribution, and use”, Computers in Cardiology 17:177-180 (1990).

9For certain types of HRV or RRV measurements (though not for heart rate measurements), this is a potential problem. One solution is to add
a small positive offset to any measurement with an expected zero mean. It is within the letter, though not the spirit, of the standard protocol, to
add a very large number in such a case, so as to make the error percentage arbitrarily small. The mean value of the reference measurements must
be reported; this should serve as a disincentive to this sort of creative abuse of the standard. An honest approach might be to add an offset on the
order of the expected standard deviation of the individual measurements.

10mxm is not restricted to comparison of heart rate measurements; if other types of measurements are available, they may be compared in the
same manner as heart rates by mxm.

162 8 March 2019 WFDB 10.6.2

Evaluating ECG Analyzers WFDB Applications Guide Evaluating ECG Analyzers

• sumstats reads certain output files generated by bxb, rxr, epicmp, and mxm, and calculates aggregate
statistics for a set of records.

• plotstm generates scatter plots of ST deviation measurements collected by epicmp.

• ecgeval automates the entire comparison procedure by running bxb, rxr, epicmp, and mxm for each
record, collecting their output, then running sumstats (and optionally plotstm), and finally printing the
results.

To obtain a concise summary of how to use any of these programs, including a list of any command-line options,
simply run the program without any command-line arguments. Refer to the WFDB Applications Guide, which
accompanies the WFDB Software Package, for details.

In most cases, it will be easiest to collect all of the annotation files before beginning the comparison, and then to
perform the comparison by typing:

ecgeval

The program asks for the test annotator name, the names of the databases used for testing, and what optional detector
outputs should be evaluated.

Only the statistics required by EC38 and EC57 are reported by ecgeval. If more detailed evaluation data are
needed, it will be necessary to run bxb, rxr, etc., separately. If file space is extremely limited, it may be necessary
to delete each test annotation file after it has been compared against the reference file, before the next test annotation
file can be created; in such cases, it may also be necessary to prompt the user to change media containing signal or
reference annotation files, or to reset the device under test before beginning each record. Optionally, ecgeval can
generate a script (batch) file of commands, which can be edited to accommodate special requirements such as these.

For example, suppose we have obtained a set of test annotation files with the annotator name “yow”, which we
wish to compare against the reference annotation files (annotator name “atr”)11 and reference heart rate annotation
files (annotator name “htr”). The portion of the evaluation script generated by ecgeval for MIT DB record 100
is:

bxb -r 100 -a atr yow -L bxb.out sd.out
rxr -r 100 -a atr yow -L vruns.out sruns.out
mxm -r 100 -a htr yow -L hr0.out -m 0
epicmp -r 100 -a atr yow -L -A af.out

-V vf.out -S st.out stm.out

(The last two lines shown above form a single command. The mxm command gathers statistics on measurement
number 0; if other heart rate measurements are defined, mxm should be run once for each such measurement,
substituting the appropriate measurement numbers for 0 in the output file name, hr0.out, and the final argument.)
Statistics for the remainder of the MIT DB are obtained by repeating these commands, substituting in each the
appropriate record names for 100. Once these commands have been run for all of the records, the record-by-
record statistics will be found in nine files (bxb.out, sd.out, vruns.out, sruns.out, hr0.out, af.out,
vf.out, st.out, and stm.out). The first eight of these files contain one line for each record.12 sumstats
can read any of these files, and calculates aggregate performance statistics; to use it, type “sumstats file”, where
file is the name of one of these files. The output of sumstats contains a copy of its input, with aggregate statistics
appended to the end. Typically this output might be saved in a file to be printed later, e.g.,

sumstats bxb.out >>report.out

A scatter plot of the ST measurement comparisons performed by epicmp can be produced using plotstm,
the output of which can be printed directly on any PostScript printer. For example, to make a plot file for stm.out,
type:

plotstm stm.out >stm.ps
11Annotation files for any given record are distinguished by annotator names, which correspond to the “extension” of the file name. The

reference annotation files supplied with the databases have the annotator name “atr” (originally “atruth” because “a” was intended to
indicate the file type, and “truth” because . . . well, because the annotations are supposed to be The Truth).

12stm.out contains one line for each ST deviation measurement that was compared; in this example, stm.out would be empty since the
reference annotation files of the MIT DB do not contain ST deviation measurements.

WFDB 10.6.2 8 March 2019 163

Evaluating ECG Analyzers WFDB Applications Guide Evaluating ECG Analyzers

4 Studying Discrepancies
Having conducted an evaluation as described above, a common question is “what were the errors?” bxb and rxr
can help answer such questions.

bxb can generate an output annotation file (with annotator name “bxb”) in which all matching beat annotations
are copied from the test annotation file, and each mismatch is indicated by a NOTE annotation, with the aux field
indicating the element of the confusion matrix in which the mismatch is tallied (e.g., “Vn” represents a beat called
a VEB by the reference annotator and a normal beat by the test annotator). Programs such as wave13 can be used
to search for and display the waveforms associated with the mismatches. To generate an output annotation file, add
the -o option to the bxb command line, as in:

bxb -r 100 -a atr yow -L bxb.out sd.out -o

A particularly useful way to document an evaluation is to print a full disclosure report with bxb output annotations,
using the program psfd (also included in the WFDB Software Package). This may be accomplished by preparing
a file containing a list of the names of the records to be printed (call it list), and then using the command:

psfd -a bxb list >output.ps

The file output.ps can be printed on any PostScript printer. Run psfd without any arguments for a summary of
its (numerous) options; try a short test before making a large set of printouts, which can take a long time.

Both bxb and rxr accept a -v option to run in “verbose” mode, in which each discrepancy is reported in the
standard error output. When running rxr, this feature is useful for finding missed and falsely detected ectopic
couplets and runs.

5 Acknowledgements
Having been involved in the production of most of the databases as well as the design of the evaluation protocols, it
has been my privilege to receive the benefits of the sustained contributions of many colleagues who have supported
these projects with their dedicated efforts. I would like especially to thank Paul Albrecht, Jim Bailey, Ted Baker,
Rich Bowser, Don Brodnick, Jerry Cox, Phil Devlin, Charlie Feldman, Scott Greenwald, Russ Hermes, David Israel,
Franc Jager, Carlo Marchesi, Roger Mark, Joe Mietus, Warren Muldrow, Diane Perry, Scott Peterson, Ken Ripley,
Paul Schluter, Alessandro Taddei, Roy Wallen, and Cees Zeelenberg.

A Using the AHA Database
Since the AHA DB is not available in the standard PhysioBank format used by all of the other databases, the WFDB
Software Package includes a pair of programs that convert files read from AHA DB distribution tapes or floppy disks
into files in PhysioBank format. a2m converts AHA annotation files, and ad2m converts AHA signal files and also
generates header (*.hea) files. (Run these programs without command-line arguments to obtain instructions on
their use.) Using a2m and ad2m, all 80 AHA DB records can be stored in roughly 130 Mb of disk space (assuming
use of the standard 35-minute records). These programs can also reformat old (pre-1989) MIT DB tapes written in
the AHA DB distribution format.

It is also possible to read and write AHA tape-format files directly using the WFDB library; refer to the WFDB
Programmer’s Guide for details.

B Noise stress testing
With respect to many tasks performed by an ECG analyzer, dealing with noise is the major problem faced by system
designers. Although measurements such as ST deviation may be obtained reliably in clean signals, the presence of
noise may render them inaccurate. In some instances, it is sufficient to recognize the presence of noise and either to
mark measurements as unreliable or to avoid making measurements altogether. In other cases, excluding noisy data

13wave (for FreeBSD, Linux, Mac OS X, Solaris, SunOS, and Windows) are included in the WFDB Software Package.

164 8 March 2019 WFDB 10.6.2

Evaluating ECG Analyzers WFDB Applications Guide Evaluating ECG Analyzers

is inappropriate (for example, given the multiple correlations among physical activity, noise, and transient ischemia,
excluding noisy signals is likely to introduce sampling bias in an ischemia detector).

It is difficult to measure the effects of noise on an ECG analyzer using ordinary recordings. Even if existing
databases include an adequate variety of both ECG signals and noise, the sample size is certainly too small to
include all combinations of noise and ECG signals that may be encountered in clinical use. In ordinary recordings,
it is difficult or impossible to separate the effects of noise from the intrinsic problems of analyzing clean signals of
the same type.

The noise stress test circumvents these problems. By adding noise in calibrated amounts to clean signals, any
combination of noise and signal types is possible. Since both the noise-corrupted signal and the clean signal can be
analyzed (in separate experiments) by the same analyzer, the effects of noise on the analysis are readily separable
from any other problems that may arise while analyzing the clean signals. Finally, since the test can be repeated
using different amounts of noise, it is possible to characterize analyzer performance as a function of signal-to-noise
ratio.

The major criticisms of the noise stress test are that not all noise is additive, and that the characteristics of the
added noise may not perfectly match those of noise observed in clinical practice. These points, though formally
irrefutable, do not negate the value of the test. In practice, most of the troublesome noise is additive; thus (given
appropriate inputs) the noise stress test can simulate most of the noisy signals of interest. The NST DB includes
noise recordings made using standard ambulatory ECG electrodes and recorders, but with electrodes placed on the
limbs of active volunteers in configurations in which the subject’s ECG is not apparent in the recorded signals. Given
the recording technique used, it is not surprising that the characteristics of the recorded noise closely match those
of noise in standard ambulatory ECG recordings. Although it may be argued that the particular muscles responsible
for the recorded noise might produce different signals than those that generate the EMG present in noisy ECGs, no
such differences are apparent from comparisons of either the signals or their power spectra.

The NST DB includes a small set of ECG records with calibrated amounts of added noise. EC38 specifies that
performance on these records must be reported, although no specific performance levels are required. Program nst
can be used to generate additional records for noise stress testing. To do so, choose an ECG record and a noise record
(the latter may be bw, em, or ma from the NST DB, or any other available noise recording). Run nst and answer
its questions to generate a noisy ECG record that may then be used in the same way as any other WFDB record.
By default, nst adds no noise during the first five minutes of the record, then adds noise for the next two minutes,
none for the following two minutes, and repeats this pattern of two minutes of noise followed by two minutes of
clean signals for the remainder of the record. The scale factors for the noise, if determined by nst, are adjusted
such that the signal-to-noise ratios are equal for each signal. The durations of the noisy periods, and the scale factors
for each signal, are recorded in a protocol annotation file, which is generated by nst unless an existing protocol
annotation file is supplied as input. To change these parameters, simply edit the protocol annotation file (using, for
example, rdann to convert it to text form, any text editor to make the modifications, and wrann to convert it back
to annotation file format), then rerun nst using the protocol file to generate a new record.

WFDB 10.6.2 8 March 2019 165

