function [p,q,D,sc] = dpfast(M,C,T,G) % [p,q,D,sc] = dpfast(M,C,T,G) % Use dynamic programming to find a min-cost path through matrix M. % Return state sequence in p,q; full min cost matrix as D and % local costs along best path in sc. % This version gives the same results as dp.m, but uses dpcore.mex % to run ~200x faster. % C is a step matrix, with rows (i step, j step, cost factor) % Default is [1 1 1.0;0 1 1.0;1 0 1.0]; % Another good one is [1 1 1;1 0 1;0 1 1;1 2 2;2 1 2] % T selects traceback origin: 0 is to any edge; 1 is top right (default); % T > 1 finds path to min of anti-diagonal T points away from top-right. % Optional G defines length of 'gulleys' for T=0 mode; default 0.5 % (i.e. accept path to only 50% of edge nearest top-right) % 2003-04-04,2005-04-04 dpwe@ee.columbia.edu $Header: /Users/dpwe/projects/dtw/RCS/dpfast.m,v 1.6 2008/03/14 14:40:50 dpwe Exp dpwe $ % Copyright (c) 2003 Dan Ellis % released under GPL - see file COPYRIGHT if nargin < 2 % Default step / cost matrix C = [1 1 1.0;0 1 1.0;1 0 1.0]; end if nargin < 3 % Default: path to top-right T = 1; end if nargin < 4 % how big are gulleys? G = 0.5; % half the extent end if sum(isnan(M(:)))>0 error('dpwe:dpfast:NAN','Error: Cost matrix includes NaNs'); end if min(M(:)) < 0 disp('Warning: cost matrix includes negative values; results may not be what you expect'); end [r,c] = size(M); % Core cumulative cost calculation coded as mex [D,phi] = dpcore(M,C); p = []; q = []; %% Traceback from top left? %i = r; %j = c; if T == 0 % Traceback from lowest cost "to edge" (gulleys) TE = D(r,:); RE = D(:,c); % eliminate points not in gulleys TE(1:round((1-G)*c)) = max(max(D)); RE(1:round((1-G)*r)) = max(max(D)); if (min(TE) < min(RE)) i = r; j = max(find(TE==min(TE))); else i = max(find(RE==min(RE))); j = c; end else if min(size(D)) == 1 % degenerate D has only one row or one column - messes up diag i = r; j = c; else % Traceback from min of antidiagonal %stepback = floor(0.1*c); stepback = T; slice = diag(fliplr(D),-(r-stepback)); [mm,ii] = min(slice); i = r - stepback + ii; j = c + 1 - ii; end end p=i; q=j; sc = M(p,q); while i > 1 & j > 1 % disp(['i=',num2str(i),' j=',num2str(j)]); tb = phi(i,j); i = i - C(tb,1); j = j - C(tb,2); p = [i,p]; q = [j,q]; sc = [M(i,j),sc]; end