
WFDB tools

A Matlab interface to the WFDB library

Jonas Carlson

November 27, 2003

The most recent versions of the software described here may be freely down-
loaded from PhysioNet (http://www.physionet.org/). An HTML version of
this guide is available at http://www.physionet.org/physiotools/matlab/-
wfdb tools/.

Contents

Preface iii

1 Installing the WFDB tools wrappers 1
1.1 Preparation . 1
1.2 Using as a directory . 2
1.3 Using as a Matlab toolbox . 2
1.4 The WFDB library and applications 2
1.5 Sample, signal, and annotator numbers 2

2 Using the WFDB tools library 3
2.1 Reading signals . 3
2.2 Reading annotations . 4
2.3 Creating an annotation file . 6
2.4 Creating a signal file . 7

3 WFDB tools library functions 9
3.1 Selecting database records . 9

3.1.1 WFDB annopen . 9
3.1.2 WFDB isigopen . 10
3.1.3 WFDB osigopen . 11
3.1.4 WFDB osigfopen . 11

3.2 Special input modes . 13
3.2.1 WFDB setifreq . 13
3.2.2 WFDB getifreq . 13
3.2.3 WFDB setgvmode . 13
3.2.4 WFDB getspf . 14

3.3 Reading and writing signals and annotations 14
3.3.1 WFDB getvec . 14
3.3.2 WFDB putvec . 15
3.3.3 WFDB getann . 15
3.3.4 WFDB putann . 15

3.4 Non-sequential access to WFDB files 15
3.4.1 WFDB isigsettime . 15
3.4.2 WFDB isgsettime . 15

i

3.4.3 WFDB iannsettime . 15
3.5 Conversion functions . 15

3.5.1 WFDB annstr . 16
3.5.2 WFDB anndesc . 16
3.5.3 WFDB ecgstr . 16
3.5.4 WFDB strann . 16
3.5.5 WFDB strecg . 16
3.5.6 WFDB timstr . 16
3.5.7 WFDB mstimstr . 16
3.5.8 WFDB strtim . 16
3.5.9 WFDB datstr . 16
3.5.10 WFDB strdat . 16
3.5.11 WFDB aduphys . 16
3.5.12 WFDB physadu . 16
3.5.13 WFDB adumuv . 16
3.5.14 WFDB muvadu . 16

3.6 Miscellaneous functions . 16
3.6.1 WFDB wfdbquit . 18
3.6.2 WFDB wfdbquiet . 18
3.6.3 WFDB wfdbverbose . 18
3.6.4 WFDB wfdberror . 18
3.6.5 WFDB sampfreq . 18
3.6.6 WFDB setsampfreq . 18
3.6.7 WFDB setbasetime . 18
3.6.8 WFDB getcfreq . 18
3.6.9 WFDB setcfreq . 18
3.6.10 WFDB getwfdb . 18
3.6.11 WFDB wfdbflush . 18
3.6.12 WFDB getinfo . 18
3.6.13 WFDB putinfo . 18

3.7 Creating structures . 18
3.7.1 WFDB Anninfo . 18
3.7.2 WFDB Annotation . 18
3.7.3 WFDB Siginfo . 18

Preface

The Waveform Database interface library (the WFDB library) is a package of
C-callable functions that provide clean and uniform access to digitized, anno-
tated signals stored in a variety of formats. These functions, although originally
designed for use with databases of electrocardiograms, are useful for dealing
with any similar collection of digitized signals, which may or may not be anno-
tated. The WFDB library has evolved to support the development of numerous
databases that include signals such as blood pressure, respiration, oxygen sat-
uration, EEG, as well as ECGs. Thus the WFDB library is considerably more
than an ECG database interface.

This guide documents WFDB tools, a set of Matlab functions that enables
the Matlab user to take full advantage of the WFDB library and explore or
create databases containing a wide variety of signals.

The WFDB tools functions are not self-contained; rather, they are ‘wrap-
pers’ for the WFDB library functions (i.e. the WFDB library must be installed
for the Matlab functions to work). The wrappers work much in the same way
as the WFDB library functions, and the effort is to keep them as true to their
counterparts as possible. The usual way to work in Matlab is to get all results
from one function, and therefore the wrappers may seem ‘low-level’ in compari-
son. Combining just a few of the wrappers in an m-file, however, would produce
the ‘high-level’ way of working in Matlab while keeping the full control of data
handling that can only be obtained from the ‘low-level’ C-like wrappers.

This guide includes several short tutorial examples that illustrate how to
read and write signals and annotations using these wrappers. Eventually, it will
also contain descriptions of all the wrapper functions available to the Matlab
user. The current version of the guide does not include descriptions of all of the
functions. Note, however, that Matlab help files for all of the wrappers are
included in the WFDB tools package, so it is always possible within Matlab
to use a command such as

help WFDB_sampfreq

to obtain information about how to use any of these wrappers, including those
that are not yet documented in this guide.

The set of wrappers is nearly complete. WFDB library functions for which
no wrappers currently exist are wfdbinit, ungetann, sample, sample valid, se-

iii

tannstr, setanndesc, setecgstr, calopen, getcal, putcal, newcal, flushcal, setmsheader,
setwfdb, setibsize, and setobsize.

iv

Chapter 1

Installing the WFDB tools
wrappers

Important: the WFDB tools wrappers have been developed and tested with Mat-
lab R13. It is highly unlikely that they can be made to work with an older
version of Matlab. Initial development and testing was under Red Hat Linux
8.0, using WFDB library version 10.3.2; the wrappers have also been tested un-
der Red Hat Linux 9.0 and WFDB library version 10.3.11. More recently, they
have also been tested under MS-Windows XP, also with WFDB library version
10.3.11. It may be possible to recompile these wrappers and to use them with
Matlab R13 on other platforms such as Mac OS/X or Solaris, but doing so is
currently unsupported.

1.1 Preparation

Before installing the WFDB tools wrappers, install the WFDB Software Pack-
age (http://www.physionet.org/physiotools/wfdb.shtml), and verify that
it is working properly on your system.

Download the WFDB tools package (http://www.physionet.org/physio-
tools/matlabWFDB tools.tar.gz) and unpack it using a command such as

tar xfvz WFDB_tools.tar.gz

This creates a directory named WFDB tools, which contains the wrapper source
files (src/*.c), help files (help/*.m), precompiled binary files (linux/*.mexglx,
for x86 GNU/Linux, and windows/*.dll, for MS-Windows), documentation (in
doc/), and tutorial examples (in examples/).

Follow the instructions given in the README file (in the top-level WFDB tools
directory) to install the WFDB tools on your system.

All functions have explanatory m-files available through Matlab’s help
function. In the case of toolbox installation (described below) a list of all func-
tions is found using help WFDB tools.

1

1.2 Using as a directory

The directory WFDB tools can be put anywhere. All Matlab programs must
then use the command addpath to make the directory available (it is probably
not a good idea to put other program files inside the WFDB tools directory).

1.3 Using as a Matlab toolbox

With sufficient write privileges, it should be possible to install the WFDB tools
as a Matlab toolbox. It should then be put in the directory:

$matlabroot$/toolbox/WFDB tools
To make it available to Matlab, this directory must be added to pathdef.m
(in the toolbox/local directory) and, if toolbox path cache is enabled, the
command rehash toolboxcache should be issued when Matlab is started.

1.4 The WFDB library and applications

The WFDB Programmer’s Guide (http://www.physionet.org/physiotools/-
wpg/), which documents the C-language WFDB library, is recommended as a
source of additional information and examples. The WFDB Applications Guide
(http://www.physionet.org/physiotools/wag/) describes many stand-alone
programs that use the WFDB library to read and write digitized signals and
annotations. If the WFDB Software Package has been correctly installed, you
can these programs from a terminal window or from within Matlab to perform
a wide variety of signal processing and analysis tasks.

1.5 Sample, signal, and annotator numbers

Several WFDB library functions, and most of the stand-alone WFDB applica-
tions, accept arguments that specify a specific sample within a digitized signal
(a sample number, a specific signal within a set of signals (a signal number, or
a specific set of annotations (an annotator number). The first sample number
in a signal has sample number 0, not 1; similarly, the first signal has signal
number 0, and the first annotator has annotator number 0. The WFDB tools
functions use the same zero-based sample, signal, and annotator numbers as
the WFDB library functions that they wrap. This point is a possible source
of confusion if you become accustomed to thinking of these numbers as array
indices (which, in C, is exactly what they are); it may be best to think of them
simply as identification numbers for the objects with which they are associated.

2

Chapter 2

Using the WFDB tools
library

This chapter illustrates using simple examples how to use the WFDB tools
wrappers to read and write signals and annotations. Additional information
about the wrappers in these examples, and about the other wrappers in the
library, can be found in the next chapter.

2.1 Reading signals

Assuming that the WFDB Software Package has been installed correctly, the
record “100s” should be available. Reading the first ten samples of this record
using Matlab would be done as:

>> S = WFDB_isigopen(’100s’)
S =
2x1 struct array with fields:

fname
desc
units
gain
initval
group
fmt
spf
bsize
adcres
adczero
baseline
nsamp
cksum

3

>> DATA = WFDB_getvec(length(S), 10)
DATA =

995 1011
995 1011
995 1011
995 1011
995 1011
995 1011
995 1011
995 1011
1000 1008
997 1008

The first command, S = WFDB isigopen(’100s’), reads the header file of
record 100s and returns the information in a structure (S, in this case). The
length of S equals the number of signals in the data file. The fields of S con-
tain the signal settings. To access, for example, the gain of signal 0 and the
description of signal 1, use the commands:

>> S(1).gain
ans =

200
>> S(2).desc
ans =
V5

(Remember: the first signal is signal 0, not signal 1! Its attributes are found in
the first structure, S(1). This will matter in later examples.)

The second command, DATA = WFDB getvec(length(S), 10), reads data
from the previously opened record. The two input parameters are the number
of signals (found as length(S)) and the desired number of samples (if omitted,
the whole record is read).

Finally, don’t forget

>> WFDB_wfdbquit

to close all open files.

2.2 Reading annotations

This example will illustrate how to open an annotation file, how to read anno-
tations from it, and how to translate them into their mnemonic and description
strings.

First, we need to create an ‘Anninfo’ structure (which might seem like a com-
plicated way to go, but it reflects the way the C wfdb library works) containing
the name and mode of the annotation file:

4

>> A = WFDB_Anninfo(1)
A =

name: ’a1’
stat: ’WFDB_READ’

The record 100s has an annotator named ’atr’, so we need to change the name
field of A before issuing the command to open the file.

>> A.name = ’atr’
A =

name: ’atr’
stat: ’WFDB_READ’

>> WFDB_annopen(’100s’, A)

Now the annotation file is open and we may read the first two annotations, and
take a closer look at the second one.

>> ANNOTATION = WFDB_getann(0, 2)
ANNOTATION =
2x1 struct array with fields:

time
anntyp
subtyp
chan
num
aux

>> ANNOTATION(2)
ans =

time: 77
anntyp: 1
subtyp: 0
chan: 0
num: 0
aux: ’’

Next, let’s see what the annotation type (the anntyp field) means, in mnemonic
and description:

>> WFDB_annstr(ANNOTATION(2).anntyp)
ans =
N
>> WFDB_anndesc(ANNOTATION(2).anntyp)
ans =
Normal beat

Finally,

>> WFDB_wfdbquit

5

2.3 Creating an annotation file

In this example, we will create an annotation file that annotates the first two
P-waves of record 100s. These are located at (roughly) sample numbers 315 and
610.

First, let’s find the annotation code for a P-wave:

>> WFDB_strann(’p’)
ans =

24

The description is:

>> WFDB_anndesc(24)
ans =
P-wave peak

Create the two annotations:

>> ANN = WFDB_Annotation(2)
ANN =
1x2 struct array with fields:

time
anntyp
subtyp
chan
num
aux

>> ANN(1).time = 315;
>> ANN(1).anntyp = 24;
>> ANN(1).aux = ’First P-wave’;
>> ANN(2).time = 610;
>> ANN(2).anntyp = 24;
>> ANN(2).aux = ’Second P-wave’;

Now create an annotator structure:

>> A = WFDB_Anninfo(1)
A =

name: ’a1’
stat: ’WFDB_READ’

>> A.name = ’p’;
>> A.stat = ’WFDB_WRITE’;

Create an empty annotation file to hold the annotations:

>> WFDB_annopen(’100s’, A)

6

Write the annotations:

>> WFDB_putann(1, ANN)

Close all open files:

>> WFDB_wfdbquit

The result may be verified using WAVE. It can be called from Matlab using:

>> !wave -r 100s -a p &

(Remember the !-sign to call system functions from Matlab and the &-sign
to run WAVE as a background process; depending on your setup, using & may
cause an error, however, and you may need to run WAVE as a foreground process
without the final ’&’ in the command.) The new annotation file, 100s.p, will
be located in Matlab’s current directory.

2.4 Creating a signal file

Creating an output signal file is made in three steps: create a signal information
structure, write the output signal data, and create the header file.

Assume we have data from three signals. We need to create a signal infor-
mation structure using:

>> S = WFDB_Siginfo(3)
S =
1x3 struct array with fields:

fname
desc
units
gain
initval
group
fmt
spf
bsize
adcres
adczero
baseline

Now these fields need to be filled with appropriate values. All of them have
default values to avoid producing errors, but it is unlikely that they will fit our
signals. For example, if signal 0 is the X-lead of a Frank-lead ECG, we may
want its description to be:

>> S(1).desc = ’Frank X’;

7

and so on for all other fields. (Remember: the first signal is signal 0; its at-
tributes are in S(1).) When done, we create an empty signal file in which to
write the data, using

>> WFDB_osigfopen(S)

We also need to supply the sampling frequency, for example 1 kHz:

>> WFDB_setsampfreq(1000);

and the basetime of the recording (i.e. the time of sample number 0). Assuming
the recording was started when my oldest daughter was born:

>> WFDB_setbasetime(’02:19:00 02/09/1999’)

(Dates used by WFDB tools are always in DD/MM/YYYY format; 02/09/1999
is 2 September, not February 9.)

Now we’re done with providing signal information and it is time to write the
actual signal data. This must be stored column-wise in a matrix (one signal
per column, one sample per row). If our data is stored in the variable DATA we
would use:

>> WFDB_putvec(DATA)

Finally, we need to record the information from S into a header (.hea) file for
later use:

>> WFDB_newheader(’test1’)

The result of these operations will, in the current directory, be a header file,
test1.hea, and a signal file with the name specified in the fname fields of the
signal information structure, S, above.

Use

>> WFDB_wfdbquit

to reset and exit gracefully.

8

Chapter 3

WFDB tools library
functions

3.1 Selecting database records

These functions are used to open input and output signal and annotation files.

WFDB annopen Opening input and output annotation files.

WFDB isigopen Opening input signal files.

WFDB osigopen Opening output signal files.

WFDB osigfopen Opening output signal files by name.

3.1.1 WFDB annopen

WFDB annopen(RECORD, ANNINFO)

RECORD: Record name. String.
ANNINFO: WFDB Anninfo structure(s).

This function opens input and output annotation files for a selected record. If
RECORD begins with ‘+’, previously opened annotation files are left open, and
the record name is taken to be the remainder of RECORD after discarding the
‘+’. Otherwise, WFDB annopen closes any previously opened annotation files,
and takes all of RECORD as the record name. ANNINFO is a structure array
created by WFDB Anninfo (see section 3.7.1), with one array element for each
annotator to be opened. The caller must fill in the WFDB Anninfo structure
array to specify the names of the annotators, and to indicate which annotators
are to be read, and which are to be written. Input and output annotators may
be listed in any order in ANNINFO. Annotator numbers (for both input and

9

output annotators) are assigned in the order in which the annotators appear in
ANNINFO (the first annotator is number 0). For example, these instructions

>> a = WFDB_Anninfo(3);
>> a(1).name = ’a’; a(1).stat = ’WFDB_READ’;
>> a(2).name = ’b’; a(2).stat = ’WFDB_WRITE’;
>> a(3).name = ’c’; a(3).stat = ’WFDB_READ’;
>> WFDB_annopen(’100s’, a)

attempt to open three annotation files for record ‘100s’. Annotator ‘a’ becomes
input annotator 0, ‘b’ becomes output annotator 0, and ‘c’ becomes input an-
notator 1. Thus WFDB getann(1) (see section 3.3.3) will read all annotations
from annotator ‘c’, and WFDB putann(0, ANN) (see section 3.3.4) will write
an annotation for annotator ‘b’. Input annotation files will be found if they are
located in any of the directories in the WFDB path (see section 3.6.10). Output
annotators are created in the current directory (but note that, under Unix at
least, it is possible to specify annotator names such as ‘/here’ or ‘zzz/there’ or
even ‘../somewhere/else’)

See also: WFDB Anninfo (3.7.1), WFDB getann (3.3.3), WFDB putann
(3.3.4)

3.1.2 WFDB isigopen

S = WFDB isigopen(RECORD)

S: Signal information structure array with as many elements as signals.
RECORD: Record name. String.

This function opens input signal files for a selected record. If RECORD
begins with ‘+’, previously opened input signal files are left open, and the
record name is taken to be the remainder of RECORD after discarding the
‘+’. Otherwise, WFDB isigopen closes any previously opened input signal files,
and takes all of RECORD as the record name. S is a structure array with
WFDB Siginfo elements (see section 3.7.3 for an explanation of the fields), one
for each signal that was opened.

Calling WFDB isigopen also sets internal WFDB library variables that record
the base time and date, the length of the record, and the sampling and counter
frequencies, so that time conversion functions such as WFDB strtim (see section
3.5.8) that depend on these quantities will work properly.

WFDB isigopen will fill the structure array S with information about the
signals in the order in which signals are specified in the ‘hea’ file for the record
(signal numbers begin with 0). For example, the gain attributes of each signal
in record ‘100s’ can be read like this:

>> S = WFDB_isigopen(’100s’);
>> for ii = 1:length(S)
sprintf(’Signal %d, gain: %d’, ii-1, S(ii).gain)

10

end
ans =
Signal 0, gain: 200
ans =
Signal 1, gain: 200

An error message is produced if WFDB isigopen is unable to open any of
the signals listed in the header file, or if it cannot read the header file. It is not
considered an error if only some of the signals can be opened, however.

See also: WFDB Siginfo (3.7.3)

3.1.3 WFDB osigopen

S = WFDB osigopen(RECORD, NSIG);

S: Structure array to be filled with signal information.
RECORD: String. Record name from which header file will be read.
NSIG: Number of signals to open.

This function opens output signal files. Use it only if signals are to be writ-
ten using WFDB putvec. The signal specifications, including the file names,
are read from the header file for a specified record and returned in the struc-
ture array S. Unmodified MIT or AHA database ‘hea’ files cannot be used,
since WFDB osigopen would attempt to overwrite the (write-protected) signal
files named within. If RECORD begins with ‘+’, previously opened output
signal files are left open, and the record name is taken to be the remainder of
RECORD after discarding the ‘+’. Otherwise, osigopen closes any previously
opened output signal files, and takes all of RECORD as the record name. S is
a WFDB Siginfo structure array which, on return, will be filled with the signal
specifications.

No more than NSIG (additional) output signals will be opened by WFDB osigopen,
even if the header file contains specifications for more than NSIG signals.

See also: WFDB Siginfo (3.7.3), WFDB putvec (3.3.2)

3.1.4 WFDB osigfopen

WFDB osigfopen(S);

S: Structure array with signal information. Create using WFDB Siginfo (see
section 3.7.3).

This function opens output signals, as does WFDB osigopen, but the sig-
nal specifications, including the signal file names, are supplied by the caller to
WFDB osigfopen, rather than read from a header file as in WFDB osigopen.
Any previously open output signals are closed by WFDB osigfopen. S is a

11

WFDB Siginfo structure array (see section 3.7.3), with one element for each
signal to be opened.

Before invoking WFDB osigfopen, the caller must fill in the fields of the
WFDB Siginfo structure S. To make a multiplexed signal file, specify the same
fname and group for each signal to be included. For ordinary (non-multiplexed)
signal files, specify a unique fname and group for each signal. See section
2.4: Creating a single-frequency output file, for an illustration of the use of
WFDB osigfopen.

See also: WFDB Siginfo (3.7.3)

12

3.2 Special input modes

setifreq Setting the input sampling frequency.

getifreq Determining the input sampling frequency.

setgvmode Setting the resolution for a multifrequency record.

getspf Determining the number of samples per frame.

3.2.1 WFDB setifreq

WFDB setifreq(IFREQ);

IFREQ: Input sampling frequency.

This function sets the current input sampling frequency (in samples per
second per signal). It should be invoked after opening the input signals (us-
ing WFDB isigopen), and before using any of WFDB getvec, WFDB getann,
WFDB putann, WFDB isigsettime, WFDB isgsettime, WFDB timstr, WFDB mstimstr,
or WFDB strtim. Note that the operation of WFDB getframe is unaffected by
WFDB setifreq.

Use WFDB setifreq when your application requires input samples at a spe-
cific frequency. After invoking WFDB setifreq, WFDB getvec resamples the
digitized signals from the input signals at the desired frequency (see section
3.3.1), and all of the WFDB tools functions that accept or return times in sam-
ple intervals automatically convert between the actual sampling intervals and
those corresponding to the desired frequency.

See also: WFDB getvec (3.3.1)

3.2.2 WFDB getifreq

FREQ = WFDB getifreq;

FREQ: Counter frequency.

This function returns the current input sampling frequency (in samples per
second per signal), which is either the raw sampling frequency for the record
(as would be returned by WFDB sampfreq (see section 3.6.5), or the frequency
chosen using a previous invocation of WFDB setifreq.

See also: WFDB sampfreq (3.6.5), WFDB setifreq (3.2.1)

3.2.3 WFDB setgvmode

WFDB setgvmode(MODE);

13

MODE: String. Either ’WFDB LOWRES’ (default) or ’WFDB HIGHRES’.

Set the mode used by WFDB getvec when reading a multi-frequency record.
If MODE is ’WFDB LOWRES’, WFDB getvec decimates oversampled signals.
If MODE is ’WFDB HIGHRES’, WFDB getvec interpolates signals sampled at
a lower frequency (repeating the last sample value).

Example: Signal 0 is sampled using 100 Hz and signal 1 using 200Hz. With
WFDB LOWRES, WFDB getvec returns samples using 100 Hz and signal 1 is
decimated from 200 Hz to 100 Hz. With WFDB HIGHRES, WFDB getvec
returns samples using 200 Hz and signal 0 is interpolated from 100 Hz to 200
Hz.

WFDB setgvmode also affects how annotations are read and written. If
WFDB setgvmode(’WFDB HIGHRES’) is invoked before using WFDB annopen,
WFDB getvec, WFDB sampfreq, WFDB strtim, or WFDB timstr, then all
time data (including the time attributes of annotations read by WFDB getann
or written by WFDB putann) visible to the application are in units of the
high-resolution sampling intervals. (Otherwise, time data are in units of frame
intervals.)

3.2.4 WFDB getspf

SPF = WFDB getspf;

SPF: Samples per frame.

Unless the application is operating in WFDB HIGHRES mode (see section
3.2.3) and has then opened a multi-frequency record, this function returns 1.
For the case of a multi-frequency record being read in high resolution mode,
however, WFDB getspf returns the number of samples per signal per frame
(hence WFDB sampfreq/WFDB getspf is the number of frames per second).

3.3 Reading and writing signals and annotations

getvec Reading input signals.

getframe Reading input signals from multifrequency records.

putvec Writing output signals.

getann Reading annotations.

putann Writing annotations.

3.3.1 WFDB getvec

DATA = WFDB_getvec(NSIG);
DATA = WFDB_getvec(NSIG, NSAMP);

14

NSIG: Number of signals.
NSAMP: Number of samples to read.

This function reads samples from open input signals. Typically, we prepare
to use this function by

S = WFDB_isigopen(record);
NSIG = length(S);

If the recording is not too long, it can be read all at once:

DATA = WFDB_getvec(NSIG);

Note that recordings can be arbitrarily long and are often much larger than
available memory; also note that there may be a very long delay if an entire
record is read from a remote web server over a slow link.

A better strategy is to read a segment of NSAMP samples from each signal,
choosing a value of NSAMP that is a suitable amount to process in memory:

DATA = WFDB_getvec(NSIG, NSAMP)

This form returns up to NSAMP samples, from sample number T to sample
number T+NSAMP-1, where T is the input pointer (initially 0). The input
pointer is incremented by the number of samples that have been read, so that
a subsequent use of WFDB getvec returns the next NSAMP samples, etc. Use
WFDB isigsettime (see section 3.4.1) to set the input pointer directly.

3.3.2 WFDB putvec

3.3.3 WFDB getann

3.3.4 WFDB putann

3.4 Non-sequential access to WFDB files

isigsettime Setting time of next samples read.

isgsettime As above, but for one signal group only.

iannsettime Setting time of next annotations read.

3.4.1 WFDB isigsettime

3.4.2 WFDB isgsettime

3.4.3 WFDB iannsettime

3.5 Conversion functions

annstr, anndesc, ecgstr annotation code to string

15

strann, strecg string to annotation code

timstr, mstimstr time in sample intervals to HH:MM:SS or HH:MM:SS.SSS
string

datstr Julian date to DD/MM/YYYY string

strdat DD/MM/YYYY string to Julian date

aduphys ADC units to physical units

physadu physical units to ADC units

adumuv ADC units to milliVolts

muvadu milliVolts to ADC units

3.5.1 WFDB annstr

3.5.2 WFDB anndesc

3.5.3 WFDB ecgstr

3.5.4 WFDB strann

3.5.5 WFDB strecg

3.5.6 WFDB timstr

3.5.7 WFDB mstimstr

3.5.8 WFDB strtim

3.5.9 WFDB datstr

3.5.10 WFDB strdat

3.5.11 WFDB aduphys

3.5.12 WFDB physadu

3.5.13 WFDB adumuv

3.5.14 WFDB muvadu

3.6 Miscellaneous functions

newheader Creating a ‘hea’ file for a new WFDB record.

wfdbquit Closing WFDB files.

iannclose Closing annotation files.

16

wfdbquiet Suppressing error messages from the WFDB library.

wfdberror Retrieving error messages from the WFDB library.

sampfreq Reading the sampling frequency of a WFDB record.

setsampfreq Setting the sampling frequency.

setbasetime Setting the base time.

getcfreq Functions for reading and setting counter conversion parameters.

getwfdb Reading the database path.

wfdbfile Obtaining the pathname of a WFDB file.

wfdbflush Flushing buffered output annotations and samples.

getinfo Reading info strings from a ‘hea’ file.

putinfo Writing info strings into a ‘hea’ file.

wfdbgetskew Reading intersignal skew.

wfdbsetskew Recording intersignal skew.

wfdbgetstart Reading the prolog size in a signal file.

wfdbsetstart Recording the prolog size in a signal file.

17

3.6.1 WFDB wfdbquit

3.6.2 WFDB wfdbquiet

3.6.3 WFDB wfdbverbose

3.6.4 WFDB wfdberror

3.6.5 WFDB sampfreq

3.6.6 WFDB setsampfreq

3.6.7 WFDB setbasetime

3.6.8 WFDB getcfreq

3.6.9 WFDB setcfreq

3.6.10 WFDB getwfdb

3.6.11 WFDB wfdbflush

3.6.12 WFDB getinfo

3.6.13 WFDB putinfo

3.7 Creating structures

The WFDB C functions work with different structures of information about sig-
nals, annotators, and annotations. Some of the functions in the previous sections
demand input of such structures. The following structure-creating functions are
not wrappers to any C functions; rather, they are Matlab m-files that cre-
ate structure arrays containing the required fields, with working (although not
correct in all cases) default values to avoid hard-to-find errors.

WFDB Anninfo Create annotator structure array for input and/or output
annotators

WFDB Annotation Create annotation structure array for output annota-
tion(s)

WFDB Siginfo Create signal information structure for output signals

3.7.1 WFDB Anninfo

3.7.2 WFDB Annotation

3.7.3 WFDB Siginfo

18

Support

If you believe you have found a bug, please send a report including:

• the name of the wrapper

• what input you used

• what result you got

• what result you expected

• what platform you used (CPU type, operating system name and version
number, Matlab version number, WFDB software package version num-
ber, WFDB tools version number)

Bug reports, questions, comments, and suggestions should be addressed to:

Email: Jonas dot Carlson at kard dot lu dot se

Fax: +46 46 157857

Address: (postal)
Jonas Carlson
Department of Cardiology
University Hospital
SE - 221 85 LUND
Sweden

19

	Preface
	Installing the WFDB_tools wrappers
	Preparation
	Using as a directory
	Using as a Matlab toolbox
	The WFDB library and applications
	Sample, signal, and annotator numbers

	Using the WFDB_tools library
	Reading signals
	Reading annotations
	Creating an annotation file
	Creating a signal file

	WFDB_tools library functions
	Selecting database records
	WFDB_annopen
	WFDB_isigopen
	WFDB_osigopen
	WFDB_osigfopen

	Special input modes
	WFDB_setifreq
	WFDB_getifreq
	WFDB_setgvmode
	WFDB_getspf

	Reading and writing signals and annotations
	WFDB_getvec
	WFDB_putvec
	WFDB_getann
	WFDB_putann

	Non-sequential access to WFDB files
	WFDB_isigsettime
	WFDB_isgsettime
	WFDB_iannsettime

	Conversion functions
	WFDB_annstr
	WFDB_anndesc
	WFDB_ecgstr
	WFDB_strann
	WFDB_strecg
	WFDB_timstr
	WFDB_mstimstr
	WFDB_strtim
	WFDB_datstr
	WFDB_strdat
	WFDB_aduphys
	WFDB_physadu
	WFDB_adumuv
	WFDB_muvadu

	Miscellaneous functions
	WFDB_wfdbquit
	WFDB_wfdbquiet
	WFDB_wfdbverbose
	WFDB_wfdberror
	WFDB_sampfreq
	WFDB_setsampfreq
	WFDB_setbasetime
	WFDB_getcfreq
	WFDB_setcfreq
	WFDB_getwfdb
	WFDB_wfdbflush
	WFDB_getinfo
	WFDB_putinfo

	Creating structures
	WFDB_Anninfo
	WFDB_Annotation
	WFDB_Siginfo

