function [s, ipeaks] = ecgsyn(sfecg,N,Anoise,hrmean,hrstd,lfhfratio,sfint,ti,ai,bi) % [s, ipeaks] = ecgsyn(sfecg,N,Anoise,hrmean,hrstd,lfhfratio,sfint,ti,ai,bi) % Produces synthetic ECG with the following outputs: % s: ECG (mV) % ipeaks: labels for PQRST peaks: P(1), Q(2), R(3), S(4), T(5) % A zero lablel is output otherwise ... use R=find(ipeaks==3); % to find the R peaks s(R), etc. % % Operation uses the following parameters (default values in []s): % sfecg: ECG sampling frequency [256 Hertz] % N: approximate number of heart beats [256] % Anoise: Additive uniformly distributed measurement noise [0 mV] % hrmean: Mean heart rate [60 beats per minute] % hrstd: Standard deviation of heart rate [1 beat per minute] % lfhfratio: LF/HF ratio [0.5] % sfint: Internal sampling frequency [256 Hertz] % Order of extrema: [P Q R S T] % ti = angles of extrema [-70 -15 0 15 100] degrees % ai = z-position of extrema [1.2 -5 30 -7.5 0.75] % bi = Gaussian width of peaks [0.25 0.1 0.1 0.1 0.4] % Copyright (c) 2003 by Patrick McSharry & Gari Clifford, All Rights Reserved % See IEEE Transactions On Biomedical Engineering, 50(3), 289-294, March 2003. % Contact P. McSharry (patrick@mcsharry.net) or G. Clifford (gari@mit.edu) % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % % ecgsyn.m and its dependents are freely availble from Physionet - % http://www.physionet.org/ - please report any bugs to the authors above. % set parameter default values if nargin < 1 sfecg = 256; end if nargin < 2 N = 256; end if nargin < 3 Anoise = 0; end if nargin < 4 hrmean = 60; end if nargin < 5 hrstd = 1; end if nargin < 6 lfhfratio = 0.5; end if nargin < 7 sfint = 512; end if nargin <8 % P Q R S T ti = [-70 -15 0 15 100]; end % convert to radians ti = ti*pi/180; if nargin <9 % z position of attractor % P Q R S T ai = [1.2 -5 30 -7.5 0.75]; end if nargin <10 % Gaussian width of each attractor % P Q R S T bi = [0.25 0.1 0.1 0.1 0.4]; end % adjust extrema parameters for mean heart rate hrfact = sqrt(hrmean/60); hrfact2 = sqrt(hrfact); bi = hrfact*bi; ti = [hrfact2 hrfact 1 hrfact hrfact2].*ti; % check that sfint is an integer multiple of sfecg q = round(sfint/sfecg); qd = sfint/sfecg; if q ~= qd error(['Internal sampling frequency (sfint) must be an integer multiple ' ... 'of the ECG sampling frequency (sfecg). Your current choices are: ' ... 'sfecg = ' int2str(sfecg) ' and sfint = ' int2str(sfint) '.']); end % define frequency parameters for rr process % flo and fhi correspond to the Mayer waves and respiratory rate respectively flo = 0.1; fhi = 0.25; flostd = 0.01; fhistd = 0.01; fid = 1; fprintf(fid,'ECG sampled at %d Hz\n',sfecg); fprintf(fid,'Approximate number of heart beats: %d\n',N); fprintf(fid,'Measurement noise amplitude: %d \n',Anoise); fprintf(fid,'Heart rate mean: %d bpm\n',hrmean); fprintf(fid,'Heart rate std: %d bpm\n',hrstd); fprintf(fid,'LF/HF ratio: %g\n',lfhfratio); fprintf(fid,'Internal sampling frequency: %g\n',sfint); fprintf(fid,' P Q R S T\n'); fprintf(fid,'ti = [%g %g %g %g %g] radians\n',ti(1),ti(2),ti(3),ti(4),ti(5)); fprintf(fid,'ai = [%g %g %g %g %g]\n',ai(1),ai(2),ai(3),ai(4),ai(5)); fprintf(fid,'bi = [%g %g %g %g %g]\n',bi(1),bi(2),bi(3),bi(4),bi(5)); % calculate time scales for rr and total output sampfreqrr = 1; trr = 1/sampfreqrr; tstep = 1/sfecg; rrmean = (60/hrmean); Nrr = 2^(ceil(log2(N*rrmean/trr))); % compute rr process rr0 = rrprocess(flo,fhi,flostd,fhistd,lfhfratio,hrmean,hrstd,sampfreqrr,Nrr); % upsample rr time series from 1 Hz to sfint Hz rr = interp(rr0,sfint); % make the rrn time series dt = 1/sfint; rrn = zeros(length(rr),1); tecg=0; i = 1; while i <= length(rr) tecg = tecg+rr(i); ip = round(tecg/dt); rrn(i:ip) = rr(i); i = ip+1; end Nt = ip; % integrate system using fourth order Runge-Kutta fprintf(fid,'Integrating dynamical system\n'); x0 = [1,0,0.04]; Tspan = [0:dt:(Nt-1)*dt]; [T,X0] = ode45('derivsecgsyn',Tspan,x0,[],rrn,sfint,ti,ai,bi); % downsample to required sfecg X = X0(1:q:end,:); % extract R-peaks times ipeaks = detectpeaks(X, ti, sfecg); % Scale signal to lie between -0.4 and 1.2 mV z = X(:,3); zmin = min(z); zmax = max(z); zrange = zmax - zmin; z = (z - zmin)*(1.6)/zrange -0.4; % include additive uniformly distributed measurement noise eta = 2*rand(length(z),1)-1; s = z + Anoise*eta; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function rr = rrprocess(flo, fhi, flostd, fhistd, lfhfratio, hrmean, hrstd, sfrr, n) w1 = 2*pi*flo; w2 = 2*pi*fhi; c1 = 2*pi*flostd; c2 = 2*pi*fhistd; sig2 = 1; sig1 = lfhfratio; rrmean = 60/hrmean; rrstd = 60*hrstd/(hrmean*hrmean); df = sfrr/n; w = [0:n-1]'*2*pi*df; dw1 = w-w1; dw2 = w-w2; Hw1 = sig1*exp(-0.5*(dw1/c1).^2)/sqrt(2*pi*c1^2); Hw2 = sig2*exp(-0.5*(dw2/c2).^2)/sqrt(2*pi*c2^2); Hw = Hw1 + Hw2; Hw0 = [Hw(1:n/2); Hw(n/2:-1:1)]; Sw = (sfrr/2)*sqrt(Hw0); ph0 = 2*pi*rand(n/2-1,1); ph = [ 0; ph0; 0; -flipud(ph0) ]; SwC = Sw .* exp(j*ph); x = (1/n)*real(ifft(SwC)); xstd = std(x); ratio = rrstd/xstd; rr = rrmean + x*ratio; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ind = detectpeaks(X, thetap, sfecg) N = length(X); irpeaks = zeros(N,1); theta = atan2(X(:,2),X(:,1)); ind0 = zeros(N,1); for i=1:N-1 a = ( (theta(i) <= thetap) & (thetap <= theta(i+1)) ); j = find(a==1); if ~isempty(j) d1 = thetap(j) - theta(i); d2 = theta(i+1) - thetap(j); if d1 < d2 ind0(i) = j; else ind0(i+1) = j; end end end d = ceil(sfecg/64); d = max([2 d]) ind = zeros(N,1); z = X(:,3); zmin = min(z); zmax = max(z); zext = [zmin zmax zmin zmax zmin]; sext = [1 -1 1 -1 1]; for i=1:5 clear ind1 Z k vmax imax iext; ind1 = find(ind0==i); n = length(ind1); Z = ones(n,2*d+1)*zext(i)*sext(i); for j=-d:d k = find( (1 <= ind1+j) & (ind1+j <= N) ); Z(k,d+j+1) = z(ind1(k)+j)*sext(i); end [vmax, ivmax] = max(Z,[],2); iext = ind1 + ivmax-d-1; ind(iext) = i; end