
WFDB Programmer’s Guide

Tenth Edition (revised and with additions for WFDB library version 10.3.12)
9 March 2004

George B. Moody

Harvard-MIT Division of Health Sciences and Technology

Copyright c© 1989 – 2004 George B. Moody

The most recent versions of the software described in this guide may be downloaded from
http://www.physionet.org/. For further information, write to:

George B. Moody
Massachusetts Institute of Technology
77 Massachusetts Avenue, Room E25-505A
Cambridge, MA 02139
USA

See http://www.physionet.org/physiotools/wpg/ for an HTML version of this guide.

Permission is granted to make and distribute verbatim copies of this guide provided that
the copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this guide under the
conditions for verbatim copying and under the conditions that follow in this paragraph.
Each copy of the resulting derived work must contain a notice that it is a modified version
of this guide. The notice must state which edition of this guide was the source for the
derived work, and it must credit the authors of this guide and of the modifications. The
entire resulting derived work must be distributed under the terms of a permission notice
identical to this one.
Permission is granted to copy and distribute translations of this guide into another language,
under the above conditions for modified versions.
The author would appreciate receiving copies of any modified or translated versions of this
guide for reference purposes.

http://www.physionet.org/
http://www.physionet.org/physiotools/wpg/

i

Table of Contents

Preface . 1
Records . 1
Signals, Samples, and Time . 2
Annotations . 2
Applications . 3
About this Guide . 3
Recent changes . 5

Changes in version 10.3.12 . 5
Changes in version 10.3.11 . 6
Changes in version 10.3.10 . 6
Changes in version 10.3.9 . 6
Changes in version 10.3.8 . 6
Changes in version 10.3.6 . 7
Changes in version 10.3.5 . 7
Changes in version 10.3.2 . 7
Changes in version 10.3.0 . 7
Changes in version 10.2.9 . 7
Changes in version 10.2.7 . 8
Changes in version 10.2.6 . 8
Changes in version 10.2.5 . 8
Changes in version 10.2.4 . 8
Changes in version 10.2.3 . 9
Changes in version 10.2.1 . 9
Changes in version 10.2.0 . 9
Changes in version 10.1.6 . 10
Changes in version 10.1.5 . 10
Changes in version 10.1.4 . 10
Changes in version 10.1.3 . 10
Changes in version 10.1.2 . 10
Changes in version 10.1.1 . 10
Changes in version 10.1.0 . 10
Changes in version 10.0.1 . 10
Changes in version 10.0.0 . 11

1 Using the WFDB Library 13
1.1 A Trivial Example Program in C . 13
1.2 Compiling a Program with the WFDB Library 14
1.3 Using the WFDB library with other languages 15
1.4 The Database Path and Other Environment Variables 16
1.5 Running the Example Program . 17
1.6 A Note on Identifiers . 17
1.7 More About the WFDB Path . 18
1.8 Exercises . 19

ii WFDB Programmer’s Guide

2 WFDB Library Functions 21
About these functions . 21
2.1 Selecting Database Records . 22

annopen . 22
isigopen . 22
osigopen . 24
osigfopen . 25
wfdbinit . 26

2.2 Special Input Modes . 27
setifreq . 27
getifreq . 28
setgvmode . 28
getspf . 28

2.3 Reading and Writing Signals and Annotations 29
getvec . 29
getframe . 30
putvec . 30
getann . 31
ungetann . 32
putann . 32

2.4 Non-Sequential Access to WFDB Files 34
isigsettime . 34
isgsettime . 34
iannsettime . 34
sample and sample valid . 35

2.5 Conversion Functions . 36
annstr, anndesc, and ecgstr . 36
strann and strecg . 37
setannstr, setanndesc, and setecgstr 37
[ms]timstr . 38
strtim . 38
datstr . 39
strdat . 40
aduphys . 40
physadu . 40
adumuv . 41
muvadu . 41

2.6 Calibration Functions. 42
calopen. 42
getcal . 42
putcal . 42
newcal . 43
flushcal . 43

2.7 Miscellaneous WFDB Functions . 44
newheader . 44
setheader . 44
setmsheader . 45
wfdbquit . 45

iii

iannclose . 46
oannclose . 46
wfdbquiet . 46
wfdbverbose . 46
wfdberror . 47
sampfreq . 47
setsampfreq . 47
setbasetime . 48
getcfreq . 48
setcfreq . 48
getbasecount . 49
setbasecount . 49
setwfdb . 49
getwfdb . 50
wfdbfile . 50
wfdbflush . 50
getinfo . 51
putinfo . 51
setibsize . 51
setobsize . 52
wfdbgetskew . 52
wfdbsetskew . 53
wfdbgetstart . 53
wfdbsetstart . 53

3 Data Types . 55
3.1 Signal Information Structures . 55
3.2 Calibration Information Structures . 58
3.3 Annotator Information Structures . 58
3.4 Annotation Structures . 59

4 Annotation Codes . 61
4.1 Macros for Mapping Annotation Codes 62

5 Database Files . 65
5.1 File Types . 65

Header Files . 65
Signal Files . 65
Annotation Files . 65
Calibration Files . 66
AHA Format Files . 66

5.2 Using Standard I/O for Database Files 66
5.3 Multiplexed Signal Files . 67
5.4 Multi-Frequency Records . 67
5.5 Multi-Segment Records . 68
5.6 Simultaneous Access to Multiple Records 68
5.7 Signals That Are Not Stored in Disk Files 69

iv WFDB Programmer’s Guide

5.8 Piped and Local Records . 69
5.9 NETFILES . 70
5.10 Annotation Order . 71

6 Programming Examples 73
Example 1: An Annotation Filter . 73
Example 2: An Annotation Translator . 74
Example 3: An Annotation Printer . 75
Example 4: Generating an R-R Interval Histogram 76
Example 5: Reading Signal Specifications . 78
Example 6: A Differentiator . 80
Example 7: A General-Purpose FIR Filter . 81
Example 8: Creating a New Database Record 84
Example 9: A Signal Averager . 87
Example 10: A QRS Detector . 90

Exercises . 95

Appendix A Glossary . 99

Appendix B Installing the WFDB Software
Package . 107
How to obtain the WFDB Software Package 107
Unix, GNU/Linux, and similar operating systems. 107
Mac OS X (Darwin). 108
MS-Windows . 108
Other systems . 109

Appendix C WFDB Application Programs . . 111
How to use these programs . 111
Annotation File Processing . 111
Evaluation of ECG Analyzers . 112
Signal Processing Applications . 114
Graphical Applications . 115

Appendix D Extensions . 117

Appendix E Sources . 121

Answers to Selected Exercises 129

Concept Index . 131

Function and Macro Index 137

Preface 1

Preface

This guide documents the Waveform Database interface library (the WFDB library), a
package of C-callable functions that provide clean and uniform access to digitized, annotated
signals stored in a variety of formats. These functions were originally designed for use with
databases of electrocardiograms, including the MIT-BIH Arrhythmia Database (MIT DB)
and the AHA Database for the Evaluation of Ventricular Arrhythmia Detectors (AHA DB).
In February 1990, the predefined annotation set was expanded to accommodate the needs
of the European ST-T Database (ESC DB). The WFDB library is sufficiently general,
however, to be useful for dealing with any similar collection of digitized signals, which may
or may not be annotated. The WFDB library has evolved to support the development of
numerous other databases that include signals such as blood pressure, respiration, oxygen
saturation, EEG, as well as ECGs. Among these multi-parameter databases are the MIT-
BIH Polysomnographic Database, the MGH/Marquette Foundation Waveform Database,
and the MIMIC Database. Thus the WFDB library is considerably more than an ECG
database interface.

This guide describes how to write C-language programs that use databases of ECGs and
other signals. A standard set of such programs is included in the WFDB Software Package,
and is described in the WFDB Applications Guide; other documents describe the databases
themselves, and existing programs that use them (see Appendix E [Sources], page 121, for
information about obtaining these and related items).

There are a few important concepts that should be well understood before going further.
These concepts include records; signals, samples, and time; and annotations.

Records

The databases for which the WFDB library was designed consist of a small number of
records, each of which is quite large (typically a megabyte or more). Database records usu-
ally originate as multi-channel analog tape recordings that have been digitized and stored
as disk files. For this historical reason, they are often referred to as tapes. Each record con-
tains a continuous recording from a single subject. A typical application program accesses
only a single record, and most (if not all) of the access within the record is sequential. Much
less frequently, it may be of interest to compare the contents of several records, or to select
sets of records. These databases are therefore qualitatively different from those for which
conventional database management software is written.

Records are identified by record names, which are three-digit numbers for MIT DB
records, four-digit numbers for AHA DB records, and four-digit numbers prefixed by ‘e’
for ESC DB records. You may create database records with names containing letters,
digits, and underscores. Case is significant in record names that contain letters, even in
environments such as MS-DOS for which case translation is normally performed by the
operating system on file names; thus ‘e0104’ is the name of a record found in the ESC
DB, whereas ‘E0104’ is not. A record is comprised of several files, which contain signals,
annotations, and specifications of signal attributes; each file belonging to a given record
normally includes the record name as the first part of its name. A record is an extensible
collection of files, which need not all be located in the same directory, or even on the same

2 WFDB Programmer’s Guide

physical device. Thus it is possible, for example, to create on a magnetic disk a file of your
own annotations for a record distributed on a CD-ROM, and to treat your file as part of
the record.

Signals, Samples, and Time

Signals are commonly understood to be functions of time obtained by observation of
physical variables. In this guide, a signal is defined more restrictively as a finite sequence of
integer samples, usually obtained by digitizing a continuous observed function of time at a
fixed sampling frequency expressed in Hz (samples per second). The time interval between
any pair of adjacent samples in a given signal is a sample interval; all sample intervals for a
given signal are equal. The integer value of each sample is usually interpreted as a voltage,
and the units are called analog-to-digital converter units, or adu. The gain defined for each
signal specifies how many adus correspond to one physical unit (usually one millivolt, the
nominal amplitude of a normal QRS complex on a body-surface ECG lead roughly parallel
to the mean cardiac electrical axis). All signals in a given record are usually sampled at
the same frequency, but not necessarily at the same gain (see Section 5.4 [Multi-Frequency
Records], page 67, for exceptions to this rule). MIT DB records are sampled at 360 Hz;
AHA and ESC DB records are sampled at 250 Hz.

The sample number is an attribute of a sample, defined as the number of samples of
the same signal that precede it; thus the sample number of the first sample in each signal
is zero. Within this guide, the units of time are sample intervals; hence the “time” of a
sample is synonymous with its sample number.

Samples having the same sample number in different signals of the same record are
treated as simultaneous. In truth, they are usually not precisely simultaneous, since most
multi-channel digitizers sample signals in “round-robin” fashion. If this subtlety makes a
difference to you, you should be prepared to compensate for inter-signal sampling skew in
your programs.

Annotations

MIT DB records are each 30 minutes in duration, and are annotated throughout; by
this we mean that each beat (QRS complex) is described by a label called an annotation.
Typically an annotation file for an MIT DB record contains about 2000 beat annotations,
and smaller numbers of rhythm and signal quality annotations. AHA DB records are
either 35 minutes or 3 hours in duration, and only the last 30 minutes of each record
are annotated. ESC DB records are each 2 hours long, and are annotated throughout.
The “time” of an annotation is simply the sample number of the sample with which the
annotation is associated. Annotations may be associated with a single signal, if desired.
Like samples in signals, annotations are kept in time and signal order in annotation files (but
see Section 5.10 [Annotation Order], page 71, for exceptions to this rule). No more than one
annotation in a given annotation file may be associated with any given sample of any given
signal. There may be many annotation files associated with the same record, however; they
are distinguished by annotator names. The annotator name ‘atr’ is reserved to identify
reference annotation files supplied by the developers of the databases to document correct

Preface 3

beat labels. You may use other annotator names (which may contain letters, digits and
underscores, as for record names) to identify annotation files that you create. You may
wish to adopt the convention that the annotator name is the name of the file’s creator (a
program or a person).

Annotations are visible to the WFDB library user as C structures, the fields of which
specify time, beat type, and several user-definable variables. The WFDB library performs
efficient conversions between these structures and a compact bit-packed representation used
for storage of annotations in annotation files.

Applications

Some typical uses of the WFDB library are these:
• A waveform editor, such as wave (see Appendix E [Sources], page 121), reads the

digitized signals of a database record and displays them with annotations superimposed
on the waveforms. Such a program allows the user to select any portion of the signals
for display at various scales, and to add, delete, or correct annotations.

• Signal processing programs (e.g., see [Example 7], page 81) apply digital filters to the
signals of a database record and then record the filtered signals as a new record. Similar
programs perform sampling frequency conversion.

• Analysis programs (e.g., see [Example 10], page 90) read the digitized signals, analyze
them, and then record their own annotations.

• An annotation comparator, such as bxb (see Appendix C [WFDB Applications],
page 111), reads two or more sets of annotations corresponding to a given record,
and tabulates discrepancies between them. If the reference annotations supplied with
the database are compared in this way with annotations produced using an analysis
program, this comparison is a means of establishing the accuracy of the analysis
program’s output.

The WFDB library provides the means for programs such as those described above
to select a database record, read and write signals, read and write annotations, jump to
arbitrary points in the record, and determine attributes of the signals such as the sampling
frequency. The library also provides a variety of other more specialized services for programs
that need them. The library defines an interface between programs and the database that
is sufficiently powerful, general, and efficient to eliminate the need for ad hoc user-written
database I/O.

About this Guide

You should have a good grasp of the C language in order to make the best use of this
guide. If ANSI C prototypes, used here to document the WFDB library functions, are
unfamiliar to you, see pp. 217–218 in the second edition of The C Programming Language
by Kernighan and Ritchie, Prentice Hall, 1988. (This is the famous K&R; all K&R references
in this guide include page numbers for the second edition. Newcomers to C should have
a copy for ready reference while reading this guide.) It may also be helpful to have a
copy of a database directory, such as the MIT-BIH Arrhythmia Database Directory . The

http://www.physionet.org/physiobank/database/html/mitdbdir/

4 WFDB Programmer’s Guide

WFDB Applications Guide will be useful as a reference for existing WFDB library-based
applications (available from PhysioNet, http://www.physionet.org/).

You should have access to a computer that has the WFDB library and at least one or
two database records on-line, or access to the World Wide Web, where database records
can be obtained from PhysioNet and other sources. (If you are installing the WFDB library
on a new computer for the first time, please read the installation notes supplied with the
WFDB library first, or see Appendix B [Installing the WFDB Software Package], page 107,
then return here.) You should know how to create a C source file using your favorite editor,
and you should know how to compile it and how to run the resulting executable program.

Resist all temptation to plunge into the esoteric details of file formats. (Those who find
such details irresistible will find them in Section 5 of the WFDB Applications Guide; note,
however, that support for new file formats is added to the WFDB library from time to time,
so that the information you find there may be incomplete.) The WFDB library provides
an efficient means of reading and writing files in many formats; it is not a trivial task to
duplicate it, and time spent doing so is time that could be spent doing something useful,
enjoyable, or possibly both. If you really think you need to understand the file formats in
order to translate them into whatever the ECGWhizz Model 666 needs, consider instead
writing a format translator using the WFDB library to read the files; then you will at least
have a program that requires only recompilation with a new version of the WFDB library
when file formats change. In extremis, use ‘rdann’ and ‘rdsamp’ — available from PhysioNet
in source and ready-to run formats — to translate files into text format.

Chapter 1 of this guide begins with a simple example program that reads a few samples
from a database record. This example should help you understand the mechanics of compil-
ing and using a program that does something with an ECG database. Chapter 2 introduces
the library functions themselves, with a number of brief examples; you may wish to skim
through this material on a first reading to get acquainted with what is available, and then
refer to it as needed while writing your programs. Data structures for annotations and for
signal and annotator attributes are described in chapter 3. Chapter 4 contains a table of an-
notation types and descriptions of several annotation-mapping macros. Database files and
related topics are discussed in chapter 5, which can be skipped on a first reading. Chapter
6 contains additional example programs that illuminate a few of the darker corners of the
WFDB library. The glossary defines the ordinary-sounding words such as signal that have
specialized meanings in this guide; such words are emphasized in their first appearances
in order to warn you that you should look them up in the glossary on a first reading (see
Appendix A [Glossary], page 99).

If the WFDB library has not yet been installed on your system, see Appendix B [In-
stalling the WFDB Software Package], page 107. Another appendix (see Appendix C
[WFDB Applications], page 111) includes brief descriptions of the application programs
that are distributed with the WFDB library as part of the WFDB software package.

Another appendix discusses porting the WFDB library to new machines or operating
systems, and includes notes on adding support for new file formats, annotation codes, and
other enhancements (see Appendix D [Extensions], page 117). The WFDB library has been
written with portability in mind. It runs on a wide variety of machines and operating
systems, including Unix (BSD 4.x, System V, SunOS, Solaris, HP-UX, OSF/1, Version 7,
XENIX, VENIX, ULTRIX, GNU/Linux, FreeBSD, OpenBSD, IRIX, AIX, AUX, Darwin,
Mac OS X, SCO, Coherent, and more), MS-DOS, MS-Windows, VMS, and classic Mac

http://www.physionet.org/physiotools/wag/
http://www.physionet.org/

Preface 5

OS. This guide was written for Unix users (with notes for MS-Windows and MS-DOS users
where differences exist), but others should find only minor differences.

At the end of the guide is a list of sources for databases and other materials that may
be useful to readers (see Appendix E [Sources], page 121).

Many friends have contributed to the development of the WFDB library. Thanks to Paul
Albrecht, Ted Baker, Phil Devlin, Scott Greenwald, Isaac Henry, David Israel, Roger Mark,
Joe Mietus, Warren Muldrow, and especially to Paul Schluter, whose elegant 8080 assembly
language functions inspired these (long live getann!). Pat Hamilton and Bob Farrell con-
tributed ports, to classic Mac OS and the MS 32-bit Windows environments, respectively.
Jose Garcia Moros and Salvador Olmos contributed Matlab/Octave reimplementations of
a useful subset of the WFDB library. Jonas Carlson wrote, documented, and contributed a
set of Matlab wrappers for the WFDB library. Thanks also to the many readers of earlier
versions of this guide; if this edition answers your questions, it is because someone else has
already asked them, and hounded the author until he produced comprehensible answers.

Before May, 1999, and the release of version 10.0.0 of the library, the WFDB library was
known as the DB library, and this guide was the ECG Database Programmer’s Guide. The
name of the library was changed because of confusion caused by the recent proliferation
of another library with the same name (a reimplementation of the Berkeley Unix DBM
library). The names of this guide, and of the WFDB Applications Guide (formerly the
ECG Database Applications Guide), have been changed in view of the increasingly broad
range of applications in which the library is being used.

The first edition of this guide was written as a tutorial for MIT students using the
ECG databases for a variety of signal-processing and analysis projects. The guide, and the
WFDB library itself, have been extensively revised since they first appeared in 1981. Your
comments and suggestions are welcome. Please send them to:

George B. Moody <george@mit.edu>
MIT Room E25-505A
Cambridge, MA 02139
USA

If you use the GNU emacs editor, you can peruse a hypertext version of this guide using
info if it has been installed on your system; among its many other features, emacs makes
it easy to copy code from the examples into your own programs. Installation instructions
are included in the WFDB Software Package; type C-h i within GNU emacs to start up
info (see Appendix E [Sources], page 121, for information about obtaining GNU emacs).

An HTML version of this guide, suitable for viewing using any web browser, is in-
cluded with the WFDB Software Package. The latest version may always be viewed at
http://www.physionet.org/physiotools/wpg/ using your web browser.

Recent changes

This section contains a brief summary of changes to the WFDB library and to this guide
since the first printing of the tenth edition of this guide in June, 1999. See ‘NEWS’, in the
top-level directory of the WFDB Software Package distribution, for information on any
more recent changes that may not be described here.

mailto:george@mit.edu
http://www.physionet.org/physiotools/wpg/

6 WFDB Programmer’s Guide

Changes in version 10.3.12

Okko Willeboordse pointed out an incompatibility between the native MS-Windows API
and the ANSI/ISO C library function mkdir, which is used by the WFDB library. This does
not present a problem when compiling the WFDB library using the supported Cygwin/gcc
compiler under MS-Windows, nor does any related problem occur on any other platform.
It should now be a little easier to compile the WFDB library using unsupported compilers,
thanks to a new MKDIR macro that hides the incompatibility (see ‘lib/wfdblib.h0’).

Piotr Wlodarek initiated a discussion about memory leaks in the WFDB library, citing
as an example the ’trivial example program in C’ from this Guide, which does not free
memory it allocates in isigopen() when reading the signal specifications. This problem
can be avoided by invoking wfdbquit() in the example program, just before exiting. Further
discussion of this point has been added to this Guide following the presentation of the ’trivial
example’, and in the description of wfdbquit.

Changes in version 10.3.11

In ‘signal.c’, several bugs have been identified and fixed. Thanks to Piotr Wlodarek,
who found a buffer overrun in isigopen. Also, isgsettime sometimes performed incorrect
seeks on multifrequency records that had been opened in high-resolution mode; this has
been fixed, together with a related bug that caused the value returned by strtim("e") to
be calculated incorrectly in some such cases.

Changes in version 10.3.10

In version 10.3.9, the functions setannstr, setanndesc, and setecgstr did not contain
necessary checks to avoid invoking strcmp with a NULL argument. These checks have been
added in version 10.3.10. Thanks to Thomas Heldt for reporting this problem.

Changes in version 10.3.9

The WFDB library functions setwfdb, setannstr, setanndesc, and setecgstr now
copy their input string arguments, so that it is no longer necessary for WFDB applications
to keep these strings valid. If you have created applications that rely on being able to
modify these strings, it will be necessary to invoke the corresponding functions again before
such changes will take effect within the WFDB library.

Previous versions of the WFDB library function putinfo did not flush their output until
either a new header file was created (via setheader or newheader) or the process exited.
This has now been corrected, and putinfo output is now flushed before putinfo returns.
Thanks to Jonas Carlson for reporting this problem.

Changes in version 10.3.8

The WFDB library function setbasetime() now properly accepts arguments specifying
midnight (e.g., ‘0:0:0’), which previous versions rejected, and the function setheader()
records such times correctly in the ‘.hea’ files it creates.

Preface 7

(WFDB library version 10.3.7 was identical to 10.3.6.)

Changes in version 10.3.6

The fix applied in isigclose() in 10.3.5 was incomplete but is now (really!) fixed.
Applications that use sample() should call wfdbquit() to be certain that sample’s buffer
is freed before exiting.

Some long-standing problems in the code (in ‘lib/wfdbio.c’) that handles http range
requests for NETFILES-enabled versions of the library have been partially addressed. The
underlying issue is that http servers do not always return the range of bytes requested;
when this happens, it is not difficult to determine that there is a problem, but it is tricky to
figure out what to do about it. Based on experiments with several different http servers, the
strategy for handling such problems within the WFDB NETFILES code has been improved
substantially, but there may be further room for improvement.

Changes in version 10.3.5

Fixed a bug in WFDB library function isigclose() (in ‘lib/signal.c’) that had
caused sample()’s buffer to be freed inappropriately when switching segments in a multi-
segment record. Thanks to Dave Schaffer for the bug report and for a test case that
illustrated the bug.

(WFDB library versions 10.3.3 and 10.3.4 were identical to 10.3.2.)

Changes in version 10.3.2

Fixed a WFDB library bug that caused annotation sorting to fail if a new header file
had been written. Thanks to Winton Baker for reporting this problem and for providing
an example that illustrated the bug.

(WFDB library version 10.3.1 was identical to 10.3.0.)

Changes in version 10.3.0

Fixed bugs in ‘lib/signal.c’ that caused improper accounting of signal group numbers
when reading from two or more records at the same time (as in ‘nst’), a bug that caused a
segfault in ‘nst’, and a bug that referenced uninitialized memory in newheader if nsig =
0.

The WFDB Software Package has been ported to Mac OS X (Darwin), version 10.2 (the
port should also work under 10.1 but this has not been tested and will not be supported).

It is now possible to generate a shared WFDB library (DLL) under MS-Windows using
Cygwin/gcc.

Added functions sample and sample_valid to the WFDB library (in ‘lib/signal.c’).
sample(s, t) returns the sample at time (sample number) t from signal s, handling all
necessary buffering internally and allowing the caller to treat the signal file as a virtual
array of randomly accessible samples. sample_valid can be invoked to check if the most
recent value returned by sample was valid (e.g., to see if the end of the input was reached).
For an example of the use of these functions, see ‘app/wqrs.c’.

8 WFDB Programmer’s Guide

Changes in version 10.2.9

Fixed a bug in example 9 in this guide (introduced in version 10.2.0).

Updated ‘lib/wfdbdll.def’ and the ‘Makefile.dos’ files in several directories. These
have not been tested in recent years and may need further revisions; feedback is welcome.

Corrected persistent problems with generating PDF versions of the manuals for the
desired page size, and added hyperlinks to the PDF version of this guide.

(WFDB library version 10.2.8 was identical to 10.2.7.)

Changes in version 10.2.7

Added a workaround to wfdb_fclose (in ‘lib/wfdbio.c’) so that closing stdin after
using freopen doesn’t trigger a core dump.

If out-of-order annotations were written and automatic annotation sorting was sup-
pressed, the warning produced by oannclose (in ‘lib/annot.c’) once again includes the
correct sortann command needed to put the annotations into order. (This feature was
broken by a previous revision.)

Changes in version 10.2.6

The new functions setifreq and getifreq allow an application to choose any convenient
sampling frequency for reading input signals. Samples read from signal files using getvec
are buffered, resampled, and delivered to the calling application as if the original signals
had been sampled at the desired frequency. Times expressed in sample intervals passed to
or from other WFDB library functions (getann, putann, mstimstr, timstr, and strtim)
are rescaled as needed to match intervals corresponding to the chosen frequency. Thanks
to Pat Hamilton for the inspiration!

The WFDB library now records the base time with millisecond precision (previous ver-
sions did so with one-second precision), and ‘xform’ provides starting times to the library
function setbasetime with millisecond precision. Thanks to Allavatam Venugopal for pro-
viding examples that illustrated the need for these features.

Fixed deskewing buffer initialization in getframe, broken by the 10.2.0 update, which
introduced an infinite loop when reading a record that requires skew correction starting at
sample 0. Thanks to Andrew Walsh for finding an example that triggered this bug.

Fixed rounding errors in adumuv, muvadu, and physadu. Previous versions rounded
negative values toward zero; to obtain consistent conversions, however, it is necessary to
round all values down (e.g., from -1.5 to -2 rather than up to -1).

Fixed a memory leak in wfdb_fclose (in ‘lib/wfdbio.h’). Thanks to Ion Gaztañaga.

Changes in version 10.2.5

Additions and fixes in ‘wfdbf.c’ (the Fortran wrappers for the WFDB library).

Preface 9

Changes in version 10.2.4

Code in ‘wfdbio.c’ that required the use of the string header to identify a header file
has been revised so that the standard hea is now usable for this purpose in all cases.

Changes in version 10.2.3

Portability fixes in ‘wfdblib.h’. (WFDB library version 10.2.2 was identical to 10.2.1.)

Changes in version 10.2.1

Most users will no longer need to set the WFDB path explicitly, as a result of several
minor changes in the default path and in the installer for the WFDB Software Package.

The environment variable WFDBNOSORT was replaced by WFDBANNSORT, and the environ-
ment variable WFDBGVMODE was introduced (see Section 5.10 [Annotation Order], page 71,
and see Section 5.4 [Multi-Frequency Records], page 67, for details).

Changes in version 10.2.0

There are no longer any fixed limits on the numbers of signals or annotation files that can
be opened simultaneously, or on the number of samples per signal per frame. In previous
versions of the WFDB library, the symbols WFDB_MAXSIG, WFDB_MAXANN, and WFDB_MAXSPF
(all defined in ‘<wfdb/wfdb.h>’) specified limits on these parameters that could be modified
only by recompiling the WFDB library. These symbols are still defined for compatibility
with older applications that use them (typically to determine the size of static arrays).

Since version 10.1.1, record names may include path information (see the notes for
version 10.1.1 below), but if such names are used to generate names of WFDB output
files, the user has been required to ensure that the target directory exists. This require-
ment is eliminated in version 10.2.0. If an output file is specified to be located in a
non-existent directory, the WFDB library will attempt to create the directory (includ-
ing, if necessary, any non-existent parent directories). This feature simplifies the use of
record names that include directory information, as is common when reading data from
a CD-ROM or a web server such as PhysioNet. For example, using the WFDB path (‘.
http://www.physionet.org/physiobank/database’), if the current directory, ‘.’, does
not contain a subdirectory named ‘mitdb’, the command:

sqrs -r mitdb/100

will read its input from http://www.physionet.org/physiobank/database/mitdb/, will
create a directory named ‘mitdb’ within the current directory, and will write its output
annotation file (‘100.qrs’) into this newly-created directory. If we then use the command:

rdann -r mitdb/100 -a qrs

the header file is still read from the remote directory, but the annotation file is read from
‘./mitdb’. (The programs ‘sqrs’ and ‘rdann’ are standard applications that use the WFDB
library; see the WFDB Applications Guide for details.)

Also new is the WFDB test suite (located in the ‘checkpkg’ directory of the WFDB
source tree, at the same level as the ‘lib’ directory containing the WFDB library sources).

http://www.physionet.org/physiobank/database/mitdb/

10 WFDB Programmer’s Guide

This set of programs can be used to help verify that a newly-installed version of the WFDB
library behaves properly.

Changes in version 10.1.6

The WFDB library requires that the record name specified in the first line of a header
file must match the name of the record with which the header file is associated (this is done
in order to detect corrupted or erroneously renamed header files). Version 10.1.6 requires
that only the final portion of the record name (stripped of any path information) must
match.

Changes in version 10.1.5

More changes in the ‘make’ description files, for Cygwin compatibility.

Changes in version 10.1.4

The symbol WFDB_NETFILES replaces the old NETFILES.

Changes in version 10.1.3

More changes in the ‘make’ description files, to support a configuration script.

Changes in version 10.1.2

Changes in the ‘make’ description files.

Changes in version 10.1.1

Record names may contain (absolute or relative) path information as a prefix, and if
(as a result) an input file is found in a location that does not appear explicitly in the
WFDB path, that location is appended to the end of the WFDB path. For example, if
the WFDB path is ‘. http://www.physionet.org/physiobank/database’, and the record
name ‘mitdb/100’ is supplied to wfdbinit, the WFDB library will find the header file
at http://www.physionet.org/physiobank/database/mitdb/100.hea, and will then add
http://www.physionet.org/physiobank/database/mitdb/ to the end of the WFDB path
so that the signal file (specified as ‘100.dat’ in the header file) can be found.

Changes in version 10.1.0

Version 10.1.0 supports a new signal file format (311), and contains numerous minor
changes in the NETFILES support code introduced in 10.0.1.

http://www.physionet.org/physiobank/database/mitdb/100.hea
http://www.physionet.org/physiobank/database/mitdb/

Preface 11

Changes in version 10.0.1

Beginning with version 10.0.1, the WFDB library supports reading not only
local files, but also remote files made available by web (HTTP) or FTP servers.
To make use of this feature, link your application with both the WFDB library
and the libwww library (freely available for all versions of Unix, and for most
recent versions of MS Windows, from http://www.w3.org/Library, or from
http://www.physionet.org/physiotools/libwww/). (In some cases, notably under
GNU/Linux, libwww is linked together with the dynamically-loaded version of the WFDB
library, so that you do not need to link libwww explicitly.) All access to remote files is
read-only. If you do not wish to allow access to remote files, or if libwww is not available
for your OS, simply do not define the symbol NETFILES when compiling the WFDB
library. For further details, see ‘wfdbio.c’ in the WFDB library sources.

The WFDB environment variable may now contain whitespace (space, tab, or newline
characters) as path component separators under any OS. Multiple consecutive whitespace
characters are treated as a single path component separator. Use a ‘.’ to specify the current
directory as a path component when using whitespace as a path component separator. A
semicolon (‘;’) is also acceptable as a path component separator under any OS. A colon
(‘:’) is still acceptable as a path component separator under Unix (Linux, etc.), provided
only that the colon is not immediately followed by ‘//’.

If the WFDB path includes components of the forms ‘http://somewhere.net/mydata’
or ‘ftp://somewhere.else/yourdata’, the sequence ‘://’ is explicitly recognized as part
of a URL prefix (under any OS), and the ‘:’ and ‘/’ characters within the ‘://’ are not
interpreted further. Note that the MS-DOS ‘\’ is not acceptable as an alternative to ‘/’ in a
URL prefix. To make WFDB paths containing URL prefixes more easily (human) readable,
use whitespace for path component separators.

Previous versions of the WFDB library that were compiled for environments other than
MS-DOS used file names in the format type.record. This file name format is no longer
supported.

Changes in version 10.0.0

Beginning with version 10.0.0, the name of the library is WFDB. All earlier versions
were named DB. All library symbols have been similarly renamed, with WFDB and wfdb
replacing DB and db everywhere, in names of library functions, constants, type and structure
definitions, library source file names, and names of environment variables (e.g., the DB
environment variable is now the WFDB environment variable).

Version 10.0.0 of the WFDB library is functionally identical with the final release (version
9.7.4) of the DB library, except for the name changes. It should be possible to recompile
existing applications written for DB library version 9.x without modification, and to link
them with WFDB library version 10.0.0. This is possible because two sets of #include files
are provided with the WFDB library. The first set, accessible via #include <wfdb/...>,
works with applications written as described in this guide. The alternate set, accessible
via #include <ecg/...>, is compatible with DB 9.x applications as described in previous
editions of this guide.

http://www.w3.org/Library
http://www.physionet.org/physiotools/libwww/

12 WFDB Programmer’s Guide

Chapter 1: Using the WFDB Library 13

1 Using the WFDB Library

This chapter gives a brief overview of the steps needed to compile, load, and run a
program that uses the WFDB library. It assumes that you are able to log onto a Unix-
based computer on which the WFDB Software Package has been installed (see Appendix B
[Installing the WFDB Software Package], page 107), and that you know how to create a
source file using a text editor such as emacs or vi. If you are using an MS-DOS system,
there are a few differences noted below.

1.1 A Trivial Example Program in C

Suppose we wish to print the first ten samples of record ‘100s’. (Record ‘100s’ is the
first minute of MIT-BIH Arrhythmia Database record ‘100’, supplied as a sample in the
data directory of all source distributions of the WFDB Software Package.) We might begin
by creating a source file called ‘psamples.c’ that contains:

#include <wfdb/wfdb.h>

main()
{

int i;
WFDB_Sample v[2];
WFDB_Siginfo s[2];

if (isigopen("100s", s, 2) < 1)
exit(1);

for (i = 0; i < 10; i++) {
if (getvec(v) < 0)

break;
printf("%d\t%d\n", v[0], v[1]);

}
exit(0);

}

(See http://www.physionet.org/physiotools/wfdb/examples/psamples.c for a copy of
this program.)

All programs that use the WFDB library must include the statement

#include <wfdb/wfdb.h>

which defines function interfaces, data types (such as the WFDB_Sample and WFDB_Siginfo
types used in this example), and a few useful constants. (Most MS-DOS C compilers accept
‘/’ as a directory separator. If you prefer to use the non-portable ‘\’ under MS-DOS,
remember to quote it: ‘#include <wfdb\\wfdb.h>’.)

The functions used in the example are described in detail in the next chapter, and the
data types are described in the following chapter (see Chapter 3 [Data Types], page 55).
For now, note that isigopen prepares a record to be read by getvec, which reads a sample
from each of the two signals each time it is called.

http://www.physionet.org/physiotools/wfdb/examples/psamples.c

14 WFDB Programmer’s Guide

Note that in some cases it may be important to insure that all memory allocated by the
WFDB library is freed before the program exits; in the example program, this can be done
by adding the line

wfdbquit();

just above exit(0); (see [wfdbquit], page 45).

1.2 Compiling a Program with the WFDB Library

To compile the example program on a Unix system, we can say:

cc -o psamples psamples.c -lwfdb

to produce an executable program called psamples. (Your C compiler may be named ‘gcc’,
‘acc’, ‘CC’, or something else, rather than ‘cc’, but under any version of Unix, it will almost
certainly work as shown above.) You may use any other compiler options you choose, but
the ‘-lwfdb’ option must appear in the cc command line following any and all source (‘*.c’)
and object (‘*.o’) file names, in order to instruct the loader to search the WFDB library for
any functions that the program needs (in this case, isigopen and getvec). Some programs
will need additional libraries, and the corresponding ‘-l’ options can usually be given before
or after the ‘-lwfdb’ option.

If the WFDB library was installed with NETFILES support, it will make use of functions
contained in the libwww libraries. If you have dynamically linkable versions of the libwww
libraries, as under GNU/Linux, these will be loaded automatically when you run psamples.
If you have only static versions of these libraries, as under Solaris or MS-Windows, however,
it is necessary to provide additional arguments in the cc command line in order to compile
successfully. One way to do this is to follow the model used to compile the standard WFDB
applications supplied with the WFDB library; see ‘Makefile’ in the ‘app’ directory of the
WFDB software package source tree.

If you are using WFDB version 10.2.6 or a later version and ‘gcc’ or a compatible
compiler, the ‘wfdb-config’ utility is available to help construct commands for compiling
programs that use the WFDB library (and the libwww libraries, if available). Use it like
this:

gcc ‘wfdb-config --cflags‘ -o psamples psamples.c ‘wfdb-config --libs‘

Note that this command contains backticks (‘), not apostrophes (’). ‘wfdb-config’ is par-
ticularly useful if the WFDB library or its ‘*.h’ files are installed in non-standard locations,
or if you have only static libwww libraries.

Under MS-Windows, it will be easiest to use ‘gcc’, the GNU C/C++ compiler,
which is included in the freely available Cygwin software development system
(http://www.cygwin.com/), and also in the freely available MinGW package
(http://www.mingw.org/). An MS-DOS version of ‘gcc’ is available in the free djgpp
package (http://www.delorie.com/djgpp/). These are used within a Cygwin terminal
emulator window or an MS-DOS box in exactly the same way as described above for Unix
C compilers.

The WFDB library is developed and tested using gcc, but careful attention has been
given to making it usable with any K&R or ANSI/ISO C compiler. Note, however, that

http://www.cygwin.com/
http://www.mingw.org/
http://www.delorie.com/djgpp/

Chapter 1: Using the WFDB Library 15

binary versions of the WFDB library that have been compiled using gcc are not compat-
ible with most proprietary C/C++ compilers (except under Unix). Since gcc is free, high
quality, and supported, it is highly recommended that you use it for compiling your WFDB
applications.

If you choose to use an incompatible proprietary compiler, you are on your own! You
may be able to create a linkable version of the WFDB library from the sources in the
‘lib’ directory of the WFDB source tree using a proprietary compiler, but doing so is
unsupported (see your compiler’s documentation, and if you are using MS-DOS or MS-
Windows, see ‘Makefile.dos’ for hints). If you are not able to build the WFDB library
using your compiler, you can compile the library sources together with the source file(s)
for your application. It may be easiest to copy the library sources (both the ‘*.c’ and the
‘*.h’ files) into the same directory as the application sources. If you follow this approach,
find the directory that contains ‘stdio.h’ on your system and make a ‘wfdb’ subdirectory
within that directory, then copy the WFDB library’s ‘*.h’ files into the ‘wfdb’ subdirectory
(this is necessary so that statements of the form ‘#include <wfdb/wfdb.h>’ will be handled
properly by your compiler). For example, to compile ‘psamples.c’ with Microsoft C/C++,
set up the WFDB library source files as just described, then use this command:

cl psamples.c wfdbio.c signal.c annot.c calib.c wfdbinit.c

With Borland C/C++ or Turbo C or C++, substitute ‘bcc’ or ‘tcc’, respectively, for ‘cl’ in
the command above. You will find that some WFDB applications do not need to be compiled
with all of the WFDB library sources (for example, ‘psamples’ needs only ‘wfdbio.c’ and
‘signal.c’); in such cases, you may omit the unneeded sources for faster compilation and
smaller executable binaries.

1.3 Using the WFDB library with other languages

If you prefer to write your applications in C++, you may do so, but note that the WFDB
library is written in C. (Most C++ compilers can be run in ANSI/ISO C compatibility mode
in order to compile the WFDB library itself.) Each C++ source file that uses WFDB li-
brary functions must include ‘<wfdb/wfdb.h>’, in order to instruct your compiler to use
C conventions for argument passing and to use unmangled names for the WFDB library
functions. In order for this to work, your C++ compiler should predefine ‘__cplusplus’ or
‘c_plusplus’; if it predefines neither of these symbols, modify ‘<wfdb/wfdb.h>’ so that
the symbols ‘wfdb_CPP’ and ‘wfdb_PROTO’ are defined at the top of the file, or define
‘__cplusplus’ in each of your source files before including ‘<wfdb/wfdb.h>’. Compile and
link your program using whatever standard methods are supported by your compiler for
linking C++ programs with C libraries. See your compiler manual for further information.

A set of wrapper functions is also available for those who wish to use the WFDB library
together with applications written in Fortran. These functions, defined in ‘wfdbf.c’, provide
a thin ‘wrapper’ around the WFDB library functions, by accepting Fortran-compatible
arguments (there are no structures, and all arguments are passed by reference rather than
by value). For example, here is the Fortran equivalent of the example program in the
previous section:

integer i, v(2), g

http://www.physionet.org/physiotools/wfdb/fortran/wfdbf.c

16 WFDB Programmer’s Guide

i = isigopen("100s", 2)
do i = 1, 10
g = getvec(v)
write (6,3) v(1), v(2)

3 format("v(1) = ", i4, " v(2) = ", i4)
end do
end

(See http://www.physionet.org/physiotools/wfdb/fortran/fsamples.f for a copy
of this program; an extensively commented version of this program is also available, at
http://www.physionet.org/physiotools/wfdb/fortran/example.f.)
To compile this program using g77 (the GNU Fortran compiler), save it as ‘fsamples.f’ in
the current directory, copy ‘wfdbf.c’ to the current directory, then type:

g77 -o fsamples -fwritable-strings fsamples.f wfdbf.c -lwfdb

The Fortran wrapper functions are not discussed in this guide; for further information, refer
to fortran/README in the WFDB Software Package.

A set of wrappers for Matlab has been written and contributed by Jonas Carlson. These
wrappers (wfdb_tools) provide access to almost all of the functionality of the WFDB
library, including HTTP access to remote data files, to users of Matlab R13 (but not ear-
lier versions) under GNU/Linux or MS-Windows; other platforms remain to be tested.
The wrappers, together with examples and a tutorial/reference guide, are available from
http://www.physionet.org/physiotools/matlab/wfdb_tools/.

It should be possible to write a set of wrapper functions similar to wfdb_tools for use
with Octave (a freely available open-source language that is compatible with Matlab, avail-
able from http://www.che.wisc.edu/octave/) or Scilab (an open-source scientific soft-
ware package for numerical computations, with a language similar to that of Matlab, avail-
able from http://www-rocq.inria.fr/scilab/). Jesus Olivan Palacios has written a tu-
torial (available at http://www.neurotraces.com/scilab/sciteam/) on using the WFDB
Software Package with Scilab.

Also available is a reimplementation of a useful subset of the WFDB library
in native m-code (contributed by Jose Garcia Moros and Salvador Olmos) at
http://www.physionet.org/physiotools/matlab/.

1.4 The Database Path and Other Environment Variables

WFDB applications make use of several environment variables, which are named WFDB,
WFDBCAL, WFDBGVMODE, and WFDBANNSORT. If these variables have not been otherwise defined
by the user, their values are those given by DEFWFDB, DEFWFDBCAL, DEFWFDBGVMODE, and
DEFWFDBANNSORT (defined in ‘wfdblib.h’ at the time the WFDB library was compiled).
Unless you have a non-standard setup, you may not need to set these variables, but it will
be helpful to read this section to understand how they influence the behavior of WFDB
applications.

When WFDB applications read database files, they must be able to find them in various
locations that may vary from system to system. The WFDB library refers to a character
string that consists of an ordered list of locations to be searched for input files. This string
is called the database path, or the WFDB path.

http://www.physionet.org/physiotools/wfdb/fortran/fsamples.f
http://www.physionet.org/physiotools/wfdb/fortran/example.f
http://www.physionet.org/physiotools/wfdb/fortran/wfdbf.c
http://www.physionet.org/physiotools/wfdb/fortran/README
http://www.physionet.org/physiotools/matlab/wfdb_tools/
http://www.che.wisc.edu/octave/
http://www-rocq.inria.fr/scilab/
http://www.neurotraces.com/scilab/sciteam/
http://www.physionet.org/physiotools/matlab/

Chapter 1: Using the WFDB Library 17

On most systems, the environment variable WFDB, if set, specifies the value of the WFDB
path, and overrides the default value. If you need to use a non-default WFDB path, you must
set the WFDB environment variable appropriately before running any WFDB applications,
so that the WFDB path can be examined by the running program. The WFDB software
package includes easily customizable shell scripts (batch files) that illustrate how to do this
for popular shells and command interpreters; see setwfdb(1), in the WFDB Applications
Guide. (Under classic Mac OS, for which the concept of environment variables is foreign, the
WFDB path may be set only by using DEFWFDB.) For further information, see Section 1.7
[WFDB path syntax], page 18.

The shell scripts that set WFDB also set the WFDBCAL environment variable, which is
important if you make use of records that contain signals other than ECGs. WFDBCAL
names a calibration file located in one of the directories named by WFDB. (The symbol
DEFWFDBCAL is usually defined in ‘wfdblib.h’ to specify the name of a default calibration
file, to be used by the WFDB library if WFDBCAL has not been set.) Each signal type may
be represented by an entry in the calibration file. Entries specify the characteristics of any
calibration pulses that may be present, and customary scales for plotting the signals.

The other environment variables are less frequently used than WFDB and WFDBCAL, and
in most cases, the compiled-in defaults will be appropriate (see Section 5.10 [Annotation
Order], page 71, and see Section 5.4 [Multi-Frequency Records], page 67, for details).

1.5 Running the Example Program

If WFDB is properly set, MIT DB record ‘100s’ is on-line and readable, and the example
program was compiled correctly, it can be run by typing

psamples

(Try ‘./psamples’ if ‘psamples’ doesn’t work.) Its output will appear as:
995 1011
995 1011
995 1011
995 1011
995 1011
995 1011
995 1011
995 1011
1000 1008
997 1008

The left column contains samples from signal 0, and the right column contains those
from signal 1.

1.6 A Note on Identifiers

External identifiers that begin with the underscore (‘_’) character are reserved under
the rules of ANSI C to the compiler and libraries. In order to make the WFDB library
as portable as possible, its own external identifiers do not begin with underscores (since
otherwise they might conflict with external identifiers used by a standard library).

18 WFDB Programmer’s Guide

External identifiers beginning with ‘wfdb_’ are reserved for the use of the WFDB library.
These names are used for functions and global variables that are intended for the private
use of the WFDB library; your programs should not need to use them. You should avoid
defining functions or global variables with such names in your programs.

External identifiers beginning with ‘WFDB_’ are used for constants and data types de-
fined within ‘<wfdb/wfdb.h>’. Use these identifiers as needed in your programs, but avoid
redefining them.

1.7 More About the WFDB Path

When a WFDB file must be opened for input, the WFDB library attempts to locate
it by attaching each of the components of the WFDB path (one at a time) as a prefix
to the file name. If two or more matching files exist in different locations in the WFDB
path, the WFDB library opens only the file that resides in the first of these locations. Any
other matching files are effectively invisible to WFDB applications unless the WFDB path
is rearranged.

The default WFDB path is specified at the time the WFDB library is compiled,
by defining a value for the symbol DEFWFDB in ‘wfdblib.h’. Current versions of
the WFDB library are compiled with a three-component default WFDB path;
the first component is empty (i.e., it refers to the current directory), the second
component names the system-wide database directory (which contains the sample
WFDB files supplied with the WFDB software package), and the third component is
http://www.physionet.org/physiobank/database (referring to the PhysioBank data
archives). Note that this default may be changed at the time the WFDB library is
compiled. Normally, however, this means that any record available from PhysioBank
is readable by any WFDB application provided that PhysioBank is accessible from the
user’s computer and that the database name is included in the record name (for example,
‘slpdb/slp60’ or ‘nsrdb/16265’).

Under Unix and VMS, the WFDB path can be given as a colon-separated list of prefixes,
in the format used for the Bourne shell’s PATH variable. Under MS-Windows, MS-DOS, and
classic Mac OS, the WFDB path can be given in the format used for the MS-DOS PATH
variable, with semicolons used to separate prefixes (colons retain their customary mean-
ings, as drive letter suffixes under MS-DOS, or as directory separators on the Macintosh).
Alternatively, components of the WFDB path may be separated by whitespace (under any
operating system); this also implies that embedded spaces are not permitted within path
components. For this reason, avoid using directories with names such as ‘My Documents’,
or their subdirectories, to store WFDB files.

When WFDB applications write database files, these files are generally written to the
current directory. (As an example, an application that analyzes one or more signals in a
record may record its findings in an annotation file in the current directory.) If the record
name (as provided by the application to the WFDB library) contains path information,
however, output files are written to the corresponding subdirectory of the current directory.
(For example, if a WFDB application writes an annotation file for record edb/e0103, the
file will be written in the edb subdirectory of the current directory. The edb subdirectory
will be created by the WFDB library if does not exist already. This feature was introduced
in WFDB library version 10.2.0.)

http://www.physionet.org/physiobank/database

Chapter 1: Using the WFDB Library 19

Note particularly that the current directory is not necessarily part of the WFDB path. If
you modify your WFDB path, you must explicitly include an empty (null) component, which
corresponds to the current directory, in order to be sure that your WFDB applications can
read any WFDB files that you have previously written. In most cases, this null component
should be the first in the WFDB path. Thus, if you write into the current directory a
modified version of an existing WFDB file, any later actions that would read this file will
read your modified version rather than the original.

The WFDB path may contain http:// and ftp:// URL prefixes (other schema, such
as file:// and https://, may also be supported if they are supported by your version of
libwww). If NETFILES support is not compiled into the WFDB library, any WFDB path
components containing ‘://’ are ignored. (These features were first introduced in WFDB
library version 10.1.0.)

If the WFDB library finds that the value assigned to the WFDB path is of the form
‘@file ’, it replaces that value with the contents of the specified file. (This feature was
first introduced in WFDB library version 8.0.) Indirect WFDB path files may be nested
up to ten levels (this arbitrary limit is imposed to avoid infinite recursion if the contents of
the indirect file are incorrect). This method of indirect assignment is useful under classic
Mac OS, where recompilation of the WFDB library would otherwise be necessary in order
to change the WFDB path. It may also be useful under MS-DOS to reduce the need for
environment space, or if the length of the command needed to set the WFDB environment
variable would otherwise approach or exceed the 128-byte limit for MS-DOS commands.

If a WFDB header file (see Chapter 5 [Database Files], page 65) specifies that a signal
file is to be found in a directory that is not already in the WFDB path, that directory is
appended to the end of the WFDB path; in this case, if the WFDB path is not set, it is
created with an initial null component followed by the directory that contains the signal
file. (This feature was first introduced in WFDB library version 6.2.)

The string ‘%r’ is replaced by the current record name wherever it appears in the WFDB
path; ‘%Nr’ is replaced by the first N digits of the record name, if N is a non-zero digit.
For example, if (under Unix) the WFDB path is ‘:/cdrom/mimicdb/%3r:/cdrom/mitdb’, a
request to read a file associated with record 055n will cause the WFDB library to look first
in the current directory (since the WFDB path begins with an empty component), then in
‘/cdrom/mimicdb/055’, and then in ‘/cdrom/mitdb’. If ‘%’ is followed by any character other
than ‘r’ or a non-zero digit followed by ‘r’, that character is used as is in the WFDB path;
thus a literal ‘%’ can be included in the WFDB path by ‘escaping’ it as ‘%%’. (Substitutions
of ‘%’-strings in the WFDB path were first introduced in WFDB library version 9.7.)

1.8 Exercises

These exercises should require only a few minutes. If you work through them, you will
have an opportunity to become acquainted with a few of the most common errors in using
the WFDB library.
1. Compile the example program in this chapter and run it. If the WFDB Software

Package has not already been installed on your system, download and install the most
recent version from PhysioNet first (see Appendix B [Installing the WFDB Software
Package], page 107).

http://

20 WFDB Programmer’s Guide

2. Find out where database records are kept on your system. What records are available
locally?

3. Modify the example program so that you can specify the record to be opened, either
as a command-line argument or by having the program prompt you to type a record
name. If you are unfamiliar with command-line argument processing, see [Example 2],
page 74.

4. Use the modified version of the example to read samples from records ‘mitdb/200’,
‘edb/e0103’, ‘slpdb/slp04’, and ‘mimicdb/237/237’. The last two of these records
have 4 and 6 signals respectively, so you will need to make a few additional changes to
the program in order to read these records successfully.

5. Once again using the modified version of the example, what happens if you omit the
path information from one of the records in the previous exercise (for example, if
you try to open ‘e0103’ instead of ‘edb/e0103’? Figure out how to set the WFDB
path so that the program will work properly in this case. (Hint: use the application
‘wfdbwhich’, included with the WFDB Software Package, to find the header file for
record ‘edb/e0103’; this information will help you to determine how to set the WFDB
path.)

6. If you use MS-DOS or MS-Windows, explore and explain what happens in the previous
exercise if you type the record name using upper-case letters, or if you type a ‘\’
(backslash) instead of ‘/’ (forward slash). (Hint: record names are not filenames!)

7. What happens when you compile the example program as shown, but with the
#include statement omitted? with the ‘-lwfdb’ (‘-link wfdb’, etc.) omitted?

8. What is the type of the argument to getvec? Why can’t getvec simply return the
value it reads, as in ‘v = getvec()’?

Chapter 2: WFDB Library Functions 21

2 WFDB Library Functions

This chapter describes the functions that are available to programs compiled with the
WFDB library. The functions are introduced in several groups, with examples to illustrate
their usage.

About these functions

Each function description begins with an ANSI C function prototype, which specifies
the types of any arguments as well as the type of the quantity returned by the function (see
K&R, pp. 217–218). Note that many of these functions take pointer arguments. These can
be traps for newcomers to C. Study the examples carefully! Often a function will return
information to the caller in a variable or structure to which the pointer argument points.
It is necessary in such cases for the caller to allocate storage for the variables or structures
and to initialize the pointers so that they point to the allocated storage. If you fail to do
so, the compiler probably will not warn you of your error; instead your program will fail
mysteriously, probably with a core dump and an “illegal memory reference” error message.

With few exceptions, WFDB library functions return integers that indicate success or
failure. The tables that follow the function prototypes list the possible returns and their
meanings. By convention, a return code of −1 indicates end-of-file on input files, and no
error message is printed. Other negative return codes signify other types of errors, and
are usually accompanied by descriptive messages on the standard error output (but see
[wfdbquiet and wfdbverbose], page 46). Zero may indicate success or failure, depending
on context (see the descriptions of the individual functions below). Positive codes (returned
by only a few functions) always indicate success.

A comprehensive discussion of database files appears later in this guide (see Chapter 5
[Database Files], page 65). Most readers should not need to learn about the gruesome details
of how the data are actually stored. You should know, however, that there are files that
contain digitized signals, other files that contain annotations, and still others (called header
files) that describe attributes of the signals such as sampling frequency. The database path
lists directories in which database files are found; the WFDB library functions can find them
given only the record (and annotator) names, provided that WFDB has been properly set (see
Section 1.4 [WFDB path], page 16). WFDB library functions responsible for opening signal
files find them by reading the header file (which contains their names) first.

The first two sections of this chapter describes functions that extract information from
header files in order to gain access to signal and annotation files, and functions that con-
trol how these files are read and written. The following two sections describe functions
that read and write signal and annotation files. Many readers will not need to go any fur-
ther; the remaining sections deal with special-purpose functions that exist to serve unusual
applications.

22 WFDB Programmer’s Guide

2.1 Selecting Database Records

annopen

int annopen(char *record, WFDB_Anninfo *aiarray, unsigned int nann)

Return:

0 Success

-3 Failure: unable to open input annotation file

-4 Failure: unable to open output annotation file

-5 Failure: illegal stat (in aiarray) specified for annotation file

This function opens input and output annotation files for a selected record. If record begins
with ‘+’, previously opened annotation files are left open, and the record name is taken to be
the remainder of record after discarding the ‘+’. Otherwise, annopen closes any previously
opened annotation files, and takes all of record as the record name. aiarray is a pointer to
an array of WFDB_Anninfo structures (see Section 3.3 [Annotator Information Structures],
page 58), one for each annotator to be opened. nann is the number of WFDB_Anninfo
structures in aiarray. The caller must fill in the WFDB_Anninfo structures to specify the
names of the annotators, and to indicate which annotators are to be read, and which are to
be written. Input and output annotators may be listed in any order in aiarray. Annotator
numbers (for both input and output annotators) are assigned in the order in which the
annotators appear in aiarray. For example, this code fragment

...
char *record = "100s";
WFDB_Anninfo a[3];

a[0].name = "a"; a[0].stat = WFDB_READ;
a[1].name = "b"; a[1].stat = WFDB_WRITE;
a[2].name = "c"; a[2].stat = WFDB_READ;
if (annopen(record, a, 3) < 0)
...

attempts to open three annotation files for record ‘100s’. Annotator ‘a’ becomes input
annotator 0, ‘b’ becomes output annotator 0, and ‘c’ becomes input annotator 1. Thus
getann(1, &annot) (see [getann], page 31) will read an annotation from annotator ‘c’,
and putann(0, &annot) will write an annotation for annotator ‘b’. Input annotation files
will be found if they are located in any of the directories specified by WFDB (see Section 1.4
[WFDB path], page 16); output annotators are created in the current directory (but note
that, under Unix at least, it is possible to specify annotator names such as ‘/here’ or
‘zzz/there’ or even ‘../somewhere/else’; see [Annotation Files], page 66, for details of
how file names are constructed from annotator and record names). Several of the example
programs in chapter 6 illustrate the use of annopen; for example, see [Example 1], page 73.

As a special case, if nann is 0, aiarray can be NULL. This can be useful to force open
annotation files to be closed without closing open signal files.

Chapter 2: WFDB Library Functions 23

isigopen

int isigopen(char *record, WFDB_Siginfo *siarray, int nsig)

Return:

>0 Success: the returned value is the number of input signals (i.e., the number of
valid entries in siarray)

0 Failure: no input signals available

-1 Failure: unable to read header file (probably incorrect record name)

-2 Failure: incorrect header file format

This function opens input signal files for a selected record. If record begins with ‘+’, pre-
viously opened input signal files are left open, and the record name is taken to be the
remainder of record after discarding the ‘+’. Otherwise, isigopen closes any previously
opened input signal files, and takes all of record as the record name. If the record name is
‘-’, isigopen reads the standard input rather than a ‘hea’ file. Siarray is a pointer to an
array of WFDB_Siginfo structures (see Section 3.1 [Signal Information Structures], page 56),
one for each signal to be opened.

As a special case, if nsig is 0, siarray can be NULL. In this case, isigopen closes any
open input signals, then returns the number of signals in record without opening them.
Use this feature to determine the amount of storage needed for signal-related variables, as
in the example below, or to force open input signal files to be closed without closing open
annotation or output signal files. This action also sets internal WFDB library variables that
record the base time and date, the length of the record, and the sampling and counter fre-
quencies, so that time conversion functions such as strtim that depend on these quantities
will work properly.

If nsig is greater than 0, isigopen normally returns the number of input signals it
actually opened, which may be less than nsig but is never greater than nsig. The caller
must allocate storage for the WFDB_Siginfo structures; isigopen will fill them in with
information about the signals. Signal numbers are assigned in the order in which signals
are specified in the ‘hea’ file for the record; on return from isigopen, information for signal
i will be found in siarray[i]. For example, we can read the gain attributes of each signal in
record ‘100s’ like this:

#include <stdio.h>
#include <wfdb/wfdb.h>

main()
{

int i, nsig;
WFDB_Siginfo *siarray;

nsig = isigopen("100s", NULL, 0);
if (nsig < 1)

exit(1);
siarray = (WFDB_Siginfo *)malloc(nsig * sizeof(WFDB_Siginfo));
nsig = isigopen("100s", siarray, nsig);

24 WFDB Programmer’s Guide

for (i = 0; i < nsig; i++)
printf("signal %d gain = %g\n", i, siarray[i].gain);

exit(0);
}

(See http://www.physionet.org/physiotools/wfdb/examples/pgain.c for a copy of
this program.)

This program, unlike the example in the previous chapter, does not assume that the number
of signals is known. The first invocation of isigopen determines this number (and the
program quits if there are no signals). Next, the program allocates the array for the signal
information, and then it opens the signals using the second invocation of isigopen, passing
in the pointer siarray and the number of signals determined from the first call (nsig).

An error message is produced if isigopen is unable to open any of the signals listed
in the header file. It is not considered an error if only some of the signals can be opened,
however. A signal will not be opened if its signal file is unreadable, if an input buffer cannot
be allocated for it, or if opening all of the signals in its group would exceed the limits defined
by nsig. (Note, however, that most records have only one signal group; as a consequence,
isigopen fails if nsig is less than the total number of signals in such cases.) If necessary,
the caller can inspect the file names and signal descriptions in siarray to determine which
signals were opened; see Section 3.1 [Signal Information Structures], page 56. Several of the
example programs in chapter 6 illustrate the use of isigopen; for example, see [Example
5], page 78.

If nsig is less than 0, isigopen fills in up to −nsig members of siarray, based on informa-
tion from the header file for record, but no signals are actually opened. The value returned
in this case is the number of signals named in the ‘hea’ file. Note, however, that there is
no guarantee that all (or indeed any) of the signals named in the ‘hea’ file are available to
be opened. The features described in this paragraph were first introduced in version 4.4 of
the WFDB library.

osigopen

int osigopen(char *record, WFDB_Siginfo *siarray, unsigned int nsig)

Return:

>0 Success: the returned value is the number of output signals; this number should
match nsig

-1 Failure: unable to read header file

-2 Failure: incorrect header file format

-3 Failure: unable to open output signal(s)

This function opens output signal files. Use it only if signals are to be written using putvec.
The signal specifications, including the file names, are read from the header file for a specified
record. Unmodified MIT or AHA database ‘hea’ files cannot be used, since osigopen would
attempt to overwrite the (write-protected) signal files named within. If record begins with
‘+’, previously opened output signal files are left open, and the record name is taken to be
the remainder of record after discarding the ‘+’. Otherwise, osigopen closes any previously

http://www.physionet.org/physiotools/wfdb/examples/pgain.c

Chapter 2: WFDB Library Functions 25

opened output signal files, and takes all of record as the record name. If the record name
is ‘-’, osigopen reads the standard input rather than a ‘hea’ file. siarray is a pointer to an
uninitialized array of WFDB_Siginfo structures; siarray must contain at least nsig members.
The caller must allocate storage for the WFDB_Siginfo structures. On return, osigopen
will have filled in the WFDB_Siginfo structures with the signal specifications.

No more than nsig (additional) output signals will be opened by osigopen, even if
the header file contains specifications for more than nsig signals. For example, this code
fragment

...
WFDB_Siginfo s[2];
int i, nsig;

nsig = osigopen("8l", s, 2);
for (i = 0; i < nsig; i++)

printf("signal %d will be written into ‘%s’\n", i, s[i].fname);
...

creates 2 output signals named ‘data0’ and ‘data1’ (see Section 5.8 [Piped and Local
Records], page 70). See [Example 6], page 80, and see [Example 7], page 81, for illustrations
of the use of osigopen.

As a special case, if nsig is 0, siarray can be NULL. This can be useful to force open
output signal files to be closed without closing open annotation or input signal files.

osigfopen

int osigfopen(WFDB_Siginfo *siarray, unsigned int nsig)

Return:

>0 Success: the returned value is the number of output signals; this number should
match nsig

-2 Failure: error in signal specification (fname or desc too long, illegal fmt or
bsize, or incorrect signal group assignment)

-3 Failure: unable to open output signal(s)

This function opens output signals as does osigopen, but the signal specifications, including
the signal file names, are supplied by the caller to osigfopen, rather than read from a header
file as in osigopen. Any previously open output signals are closed by osigfopen. siarray
is a pointer to an array of WFDB_Siginfo structures (see Section 3.1 [Signal Information
Structures], page 56), one for each signal to be opened. nsig is the number of WFDB_Siginfo
structures in siarray.

Before invoking osigfopen, the caller must fill in the fields of the WFDB_Siginfo struc-
tures in siarray (see Chapter 3 [Data Types], page 55; the initval, nsamp, and cksum
fields may be left uninitialized, however). To make a multiplexed signal file, specify the
same fname and group for each signal to be included (see Section 5.3 [Multiplexed Signal
Files], page 67). For ordinary (non-multiplexed) signal files, specify a unique fname and
group for each signal. See [Example 8], page 84, for an illustration of the use of osigfopen.

26 WFDB Programmer’s Guide

As a special case, if nsig is 0, siarray can be NULL. This can be useful to force open
output signal files to be closed without closing open annotation or input signal files.

wfdbinit

int wfdbinit(char *record, WFDB_Anninfo *aiarray, unsigned int nann,
WFDB_Siginfo *siarray, unsigned int nsig)

Return:

>0 Success: the returned value is the number of input signals (i.e., the number of
valid entries in siarray)

0 Annotation files opened successfully, input signals unavailable (not an error for
programs that don’t need them; no error message is printed if nsig is 0)

-1 Failure: unable to read header file (probably incorrect record name)

-2 Failure: incorrect header file format

-3 Failure: unable to open input annotation file

-4 Failure: unable to open output annotation file

-5 Failure: illegal stat (in aiarray) specified for annotation file (see Section 3.3
[Annotator Information Structures], page 58)

This function opens database files other than output signal files for a selected record. The
code

n = wfdbinit(record, a, na, s, ns);

is exactly equivalent to
n = annopen(record, a, na);
if (n == 0)

n = isigopen(record, s, ns);

See [Example 9], page 87, for an illustration of the use of wfdbinit. See [osigopen], page 24,
and see [osigfopen], page 25, for methods of opening output signal files.

Chapter 2: WFDB Library Functions 27

2.2 Special Input Modes

setifreq

void setifreq(WFDB_Frequency frequency)

This function sets the current input sampling frequency (in samples per second per signal).
It should be invoked after opening the input signals (using isigopen or wfdbinit), and
before using any of getvec, getann, putann, isigsettime, isgsettime, timstr, mstimstr,
or strtim. Note that the operation of getframe is unaffected by setifreq.

Use setifreq when your application requires input samples at a specific frequency. Af-
ter invoking setifreq, getvec resamples the digitized signals from the input signals at
the desired frequency (see [getvec], page 29), and all of the WFDB library functions that
accept or return times in sample intervals automatically convert between the actual sam-
pling intervals and those corresponding to the desired frequency. This slightly elaborated
version of the example program from the previous chapter invokes setifreq, passing it the
desired sampling frequency from the command line, then prints the samples in record 100s,
beginning 1 second (t0) and ending 2 seconds (t1) from the beginning of the record:

#include <wfdb/wfdb.h>

main(int argc, char **argv)
{

WFDB_Frequency f = (WFDB_Frequency)0;
WFDB_Sample v[2];
WFDB_Siginfo s[2];
WFDB_Time t, t0, t1;

if (argc > 1) sscanf(argv[1], "%lf", &f);
if (f <= (WFDB_Frequency)0) f = sampfreq("100s");

if (isigopen("100s", s, 2) < 1)
exit(1);

setifreq(f);
t0 = strtim("1");
isigsettime(t0);
t1 = strtim("2");
for (t = t0; t <= t1; t++) {

if (getvec(v) < 0)
break;

printf("%d\t%d\n", v[0], v[1]);
}
exit(0);

}

(See http://www.physionet.org/physiotools/wfdb/examples/psamplex.c for a copy of
this program. Compile it as shown in the previous chapter, then run it using a command

http://www.physionet.org/physiotools/wfdb/examples/psamplex.c

28 WFDB Programmer’s Guide

such as ‘psamplex 100’.) The QRS detector in chapter 6 also illustrates the use of setifreq
(see [Example 10], page 90).

getifreq

WFDB_Frequency getifreq(void)

Return:

(WFDB_Frequency)
the input sampling frequency

This function returns the current input sampling frequency (in samples per second per
signal), which is either the raw sampling frequency for the record (as would be returned by
sampfreq, see [sampfreq], page 47), or the frequency chosen using a previous invocation of
setifreq.

setgvmode

void setgvmode(int *mode)

This function sets the mode used by getvec when reading a multi-frequency record (see
Section 5.4 [Multi-Frequency Records], page 67). If mode is WFDB_LOWRES, getvec decimates
any signals sampled at multiples of the frame rate, so that one sample is returned per signal
per frame (i.e., the oversampled signals are resampled by simple averaging of the samples for
each signal within each frame). If mode is WFDB_HIGHRES, each sample of any oversampled
signal is returned by successive invocations of getvec, and each sample of any signal sampled
at a lower frequency is returned by two or more successive invocations of getvec (i.e.,
the less frequently sampled signals are resampled using zero-order interpolation). getvec
operates in WFDB_LOWRES mode by default. WFDB_LOWRES and WFDB_HIGHRES are defined in
‘<wfdb/wfdb.h>’.

In WFDB library version 9.6 and later versions, setgvmode also affects how annota-
tions are read and written. If setgvmode(WFDB_HIGHRES) is invoked before using annopen,
wfdbinit, getvec, sampfreq, strtim, or timstr, then all WFDB_Time data (including the
time attributes of annotations read by getann or written by putann) visible to the appli-
cation are in units of the high-resolution sampling intervals. (Otherwise, WFDB_Time data
are in units of frame intervals.)

getspf

int getspf(void)

Return:

(int) the number of samples per signal per frame

Unless the application is operating in WFDB_HIGHRES mode (see [setgvmode], page 28) and
has then opened a multi-frequency record, this function returns 1. For the case of a multi-
frequency record being read in high resolution mode, however, getspf returns the number
of samples per signal per frame (hence sampfreq(NULL)/getspf() is the number of frames
per second).

Chapter 2: WFDB Library Functions 29

2.3 Reading and Writing Signals and Annotations

getvec

int getvec(WFDB_Sample *vector)

Return:

>0 Success; the returned value is the number of input signals (the number of valid
entries in vector)

-1 End of data (contents of vector not valid)

-3 Failure: unexpected physical end of file

-4 Failure: checksum error (detected only at end of file)

This function reads a sample from each input signal. The caller should allocate storage for
an array of WFDB_Samples (integers) and pass a pointer to this array to getvec. (The length
of the array must be no less than the number of input signals, as obtained from isigopen
or wfdbinit.) On return, vector[i] contains the next sample from signal i. For example,
this modified version of the example from chapter 1 reads and prints the first ten samples
of each available input signal:

#include <stdio.h>
#include <malloc.h>
#include <wfdb/wfdb.h>

main()
{

int i, j, nsig;
WFDB_Sample *v;
WFDB_Siginfo *s;

nsig = isigopen("100s", NULL, 0);
if (nsig < 1)

exit(1);
s = (WFDB_Siginfo *)malloc(nsig * sizeof(WFDB_Siginfo));
if (isigopen("100s", s, nsig) != nsig)

exit(1);
v = (WFDB_Sample *)malloc(nsig * sizeof(WFDB_Sample));
for (i = 0; i < 10; i++) {

if (getvec(v) < 0)
break;

for (j = 0; j < nsig; j++)
printf("%8d", v[j]);

printf("\n");
}
exit(0);

}

30 WFDB Programmer’s Guide

(See http://www.physionet.org/physiotools/wfdb/examples/exgetvec.c for a copy of
this program.)

Notice how the value returned by the first invocation of isigopen is used to determine
how many input signals there are. Several of the example programs in chapter 6 illustrate
the use of getvec; for example, see [Example 6], page 80.

If setifreq has been used to modify the input sampling rate, getvec resamples the input
signals at the desired rate, using linear interpolation between the pair of samples nearest
in time to that of the sample to be returned. The results will generally be satisfactory,
provided that the original signals do not contain frequencies near or above the Nyquist
limit (half of the desired sampling frequency). If this is a concern, you may wish to low-
pass filter the input signals using, for example, ‘fir’ (see the WFDB Applications Guide)
before resampling them. If you use setifreq to increase the sampling frequency by a
large factor, you may wish to filter the resampled signals within your application to remove
harmonics of the original sampling frequency introduced by resampling.

getframe

int getframe(WFDB_Sample *vector)

Return:

>0 Success; the returned value is the number of input signals

-1 End of data (contents of vector not valid)

-3 Failure: unexpected physical end of file

-4 Failure: checksum error (detected only at end of file)

This function reads a vector of samples, including at least one sample from each open input
signal. If all signals are sampled at the same frequency, only one sample is read from each
signal. Otherwise, signals sampled at multiples of the frame frequency are represented by
two or more consecutive elements of the returned vector. For example, if the frame frequency
is 125 Hz, signal 0 is sampled at 500 Hz, and the remaining 3 signals are sampled at 125
Hz each, then the returned vector has 7 valid components: the first 4 are samples of signal
0, and the remaining 3 are samples of signals 1, 2, and 3. The caller should allocate storage
for an array of WFDB_Samples (integers) and pass a pointer to this array to getframe. The
length of vector must be determined by summing the values of the spf (samples per frame)
fields in the WFDB_Siginfo structures associated with the input signals (see [isigopen],
page 23).

putvec

int putvec(WFDB_Sample *vector)

Return:

>0 Success: the returned value is the number of output signals (the number of
entries in vector that were written)

0 Slew rate too high for one or more signals (difference format only; the DC
level(s) will be corrected as soon as the slew rate permits)

http://www.physionet.org/physiotools/wfdb/examples/exgetvec.c

Chapter 2: WFDB Library Functions 31

-1 Failure: write error

This function writes a sample to each input signal. The caller should fill an array of WFDB_
Samples with the samples and pass a pointer to this array to putvec. (The length of
the array must be no less than the number of output signals, as given to osigfopen or
osigopen.) On entry, vector[i] contains the next sample from signal i. For example, this
modified version of the previous example (see [getvec], page 29) copies the first ten samples
of each available input signal:

#include <stdio.h>
#include <wfdb/wfdb.h>

main()
{

int i, j, nsig;
WFDB_Sample *v;
WFDB_Siginfo *s;

nsig = isigopen("100s", NULL, 0);
if (nsig < 1)

exit(1);
s = (WFDB_Siginfo *)malloc(nsig * sizeof(WFDB_Siginfo));
if (isigopen("100s", s, nsig) != nsig ||

osigopen("8l", s, nsig) != nsig)
exit(1);

v = (WFDB_Sample *)malloc(nsig * sizeof(WFDB_Sample));
for (i = 0; i < 10; i++)

if (getvec(v) < 0 || putvec(v) < 0)
break;

wfdbquit();
exit(0);

}

(See http://www.physionet.org/physiotools/wfdb/examples/exputvec.c for a copy of
this program.)

All programs that write signals or annotations must invoke wfdbquit to close the output
files properly (see [wfdbquit], page 45). This example uses record ‘8l’ (see Section 5.8
[Piped and Local Records], page 70) for the output signal specifications; the output signal
files will be named ‘data0’ and ‘data1’ in the current directory. Several of the example
programs in chapter 6 illustrate the use of putvec; for example, see [Example 6], page 80.

getann

int getann(WFDB_Annotator an, WFDB_Annotation *annot)

Return:

0 Success

-1 End of file (*annot is not valid)

http://www.physionet.org/physiotools/wfdb/examples/exputvec.c

32 WFDB Programmer’s Guide

-2 Failure: incorrect annotator number specified

-3 Failure: unexpected physical end of file

This function reads the next annotation from the input annotator specified by an into
the annotation structure (see Section 3.4 [Annotation Structures], page 59) pointed to by
annot. The caller must allocate storage for the annotation structure. Input annotators are
numbered 0, 1, 2, etc. This short program uses getann to read the contents of the reference
(‘atr’) annotation file for record ‘100s’:

#include <wfdb/wfdb.h>

main()
{

WFDB_Anninfo a;
WFDB_Annotation annot;

a.name = "atr"; a.stat = WFDB_READ;
if (annopen("100s", &a, 1) < 0)

exit(1);
while (getann(0, &annot) == 0)

printf("%s %s\n", mstimstr(annot.time), annstr(annot.anntyp));
exit(0);

}

(See http://www.physionet.org/physiotools/wfdb/examples/exgetann.c for a copy of
this program.)

See Section 3.3 [Annotator Information Structures], page 58, for information on the
contents of the WFDB_Anninfo structure, and see [mstimstr], page 38, and see [annstr],
page 36, for details of the functions used to print portions of the annotations read by
getann in this example.

ungetann

int ungetann(WFDB_Annotator an, WFDB_Annotation *annot)

Return:

0 Success

-1 Failure: push-back buffer full (*annot was not pushed back)

-2 Failure: incorrect annotator number specified

This function arranges for the annotation structure pointed to by annot to be the next one
read by getann from input annotator an. The pushed-back annotation need not necessarily
be one originally read by getann. No more than one annotation may be pushed back at a
time for each input annotator. (This function was first introduced in WFDB library version
5.3.)

http://www.physionet.org/physiotools/wfdb/examples/exgetann.c

Chapter 2: WFDB Library Functions 33

putann

int putann(WFDB_Annotator an, WFDB_Annotation *annot)

Return:

0 Success

-1 Failure: write error

-2 Failure: incorrect annotator number specified

This function writes the next annotation for the output annotator specified by an from the
annotation structure pointed to by annot. Output annotators are numbered 0, 1, 2, etc.
The caller must fill in all fields of the annotation structure. Using version 9.7 and later
versions of the WFDB library, annotations may be written in any order (see Section 5.10
[Annotation Order], page 71). Earlier versions require that annotations be supplied to
putann in canonical order, and return an error code of -3 if an out-of-order annotation is
supplied. All programs that write signals or annotations must invoke wfdbquit to close the
output files properly (see [wfdbquit], page 45). Several of the example programs in chapter
6 illustrate the use of putann; for example, see [Example 1], page 73.

34 WFDB Programmer’s Guide

2.4 Non-Sequential Access to WFDB Files

The next three functions permit random access to signal and annotation files. It is not
possible, however, to skip backwards on piped input.

isigsettime

int isigsettime(WFDB_Time t)

Return:

0 Success

-1 Failure: EOF reached or improper seek

This function resets the input signal file pointers so that the next samples returned from
getvec will be those with sample number |t|. Only the magnitude of t is significant,
not its sign; hence values returned by strtim can always be used safely as arguments to
isigsettime (see [timstr and strtim], page 38). This function will fail if a pipe is used
for input and |t| is less than the current sample number. See [Example 7], page 81, and
see [Example 9], page 87, for illustrations of the use of isigsettime.

isgsettime

int isgsettime(WFDB_Group sgroup, WFDB_Time t)

Return:

0 Success

-1 Failure: EOF reached or improper seek

-2 Failure: incorrect signal group number specified

This function does the job of isigsettime, but only for the signal group specified by sgroup.
This function may be of use if more than one record is open simultaneously (see Section 5.6
[Multiple Record Access], page 68).

iannsettime

int iannsettime(WFDB_Time t)

Return:

0 Success

-1 Failure: EOF reached or improper seek

-3 Failure: unexpected physical end of file

This function resets the input annotation file pointers so that the next annotation read by
getann from each input annotation file will be the first occurring on or after sample number
|t| in that file. Only the magnitude of t is significant, not its sign; hence values returned by
strtim can always be used safely as arguments to iannsettime (see [timstr and strtim],
page 38). This function will fail if a pipe is used for input and |t| is less than the time of

Chapter 2: WFDB Library Functions 35

the most recent annotation read from the pipe. See [Example 9], page 87, for an illustration
of the use of iannsettime.

The version of iannsettime that is included on the first edition of the MIT-BIH Ar-
rhythmia Database CD-ROM contains a bug that can occasionally cause incorrect results.
To avoid this problem when using that version of the library, make at least one call to
getann before using iannsettime. The bug was corrected in version 4.0 of the library.

sample and sample valid

WFDB_Sample sample(WFDB_Signal s, WFDB_Time t)
int sample_valid(void)

Return:

n (from sample): The value (in raw adus) of sample number t in open signal s,if
successful, or the value of the previous successfully read sample.

0 (from sample_valid): The most recent value returned by sample was invalid

1 (from sample_valid): The most recent value returned by sample was valid

The sample function allows the caller to read samples of the currently open input signals
in any order. The first argument is a signal number (a non-negative integer between 0 and
nsig-1, where nsig is the number of open input signals), and the second is a time, expressed
as a non-negative sample number. If sample is invoked with valid input arguments, the
companion function sample_valid returns 1.

There are three ways in which sample can be invoked with invalid input arguments. In
each case, sample_valid returns 0, but sample attempts to return a reasonable value. If
s is invalid, sample returns the value of signal 0 at the specified time. If t is negative, the
returned value is that of sample number zero of the specified signal. If t specifies a sample
number beyond the end of the record, the returned value is that of the last valid sample of
the specified signal. For an example of the use of sample and sample_valid, see [Example
7], page 81.

Be sure to call wfdbquit before exiting from any program that uses sample, to be certain
that dynamically allocated memory used by sample is freed.

36 WFDB Programmer’s Guide

2.5 Conversion Functions

Functions in this section perform various useful conversions: between annotation codes
and printable strings, between times in sample intervals and printable strings, between
Julian dates and printable strings, and between ADC units and physical units.

annstr, anndesc, and ecgstr

char *annstr(int code)
char *anndesc(int code)
char *ecgstr(int code)

Return:

(char *) pointer to a printable string that describes the code, or NULL

These functions translate the annotation code specified by their argument into a string
(see Chapter 4 [Annotation Codes], page 61). Illegal or undefined codes are translated by
annstr and ecgstr into decimal numerals surrounded by brackets (e.g., ‘[55]’); anndesc
returns NULL in such cases. The strings returned by annstr are mnemonics (usually only one
character), which may be modified either by setannstr or by the presence of modification
labels in an input annotation file (see [setannstr], page 36). The strings returned by
anndesc are brief descriptive strings, usually those given in the table of annotation codes
(see Chapter 4 [Annotation Codes], page 61). The strings returned by ecgstr are usually
the same as those returned by annstr, but they can be modified only by setecgstr, and
not by the presence of modification labels as for annstr. The intent is that ecgstr should
be used rather than annstr only when it is necessary that a fixed set of mnemonics be used,
independent of any modification labels.

Here is a little program that prints a table of the codes, mnemonic strings, and descrip-
tions:

#include <stdio.h>
#include <wfdb/wfdb.h>
#include <wfdb/ecgcodes.h>

main()
{

int i;

printf("Code\tMnemonic\tDescription\n");
for (i = 1; i <= ACMAX; i++) {

printf("%3d\t%s", i, annstr(i));
if (anndesc(i) != NULL)

printf("\t\t%s", anndesc(i));
printf("\n");

}
}

(See http://www.physionet.org/physiotools/wfdb/examples/exannstr.c for a copy of
this program.)

http://www.physionet.org/physiotools/wfdb/examples/exannstr.c

Chapter 2: WFDB Library Functions 37

ACMAX is defined in ‘<wfdb/ecgcodes.h>’. The range from 1 through ACMAX includes
all legal annotation codes; if you run this program, you will find some undefined but legal
annotation codes in this range. See [Example 3], page 76, for another illustration of the use
of annstr. (annstr and anndesc were first introduced in WFDB library version 5.3.)

strann and strecg

int strann(char *string)
int strecg(char *string)

Return:

(int) annotation code

These functions translate the null-terminated ASCII character strings to which their ar-
guments point into annotation codes. Illegal strings are translated into NOTQRS. Input
strings for strann and strecg should match those returned by annstr and ecgstr respec-
tively. See [Example 9], page 87, for an illustration of the use of strann. (strann was first
introduced in WFDB library version 5.3.)

setannstr, setanndesc, and setecgstr

int setannstr(int code, char *string)
int setanndesc(int code, char *string)
int setecgstr(int code, char *string)

Return:

0 Success

-1 Failure: illegal code

These functions modify translation tables used by functions that convert between annotation
codes and strings. setannstr modifies the table shared by annstr and strann; setanndesc
modifies the table used by anndesc; and setecgstr modifies the table shared by ecgstr
and strecg. They may be used to redefine strings for defined annotation codes as well
as to define strings for undefined annotation codes. For example, setannstr(NORMAL,
"\\267") redefines the string for normal beats as a PostScript bullet, ‘•’ (NORMAL is defined
in ‘<wfdb/ecgcodes.h>’).

An important difference between setannstr (or setanndesc) and setecgstr is that
annopen and wfdbinit insert modification labels in any output annotation files that are
created after invoking setannstr or setanndesc; setecgstr does not have this side effect.
By using setannstr before annopen, a WFDB application may create annotation files with
self-contained code tables, which can be read properly by other WFDB applications without
the need to inform them explicitly about non-standard codes. For this scheme to work as
intended, all custom code mnemonics and descriptions must be defined before the output
annotation files are opened.

By passing a negative value as code to setannstr or setanndesc, the translation for
−code can be modified without triggering the generation of a modification label. This
feature can be useful for programs that use alternate sets of mnemonics or descriptions for
speakers of different languages.

38 WFDB Programmer’s Guide

Note that it is possible, though not desirable, to define identical strings for two or
more codes; the behavior of strann and strecg in such cases is implementation-dependent.
(setannstr and setanndesc were first introduced in WFDB library version 5.3.)

The next three functions convert between “standard time format” strings and times in
units of sample intervals. Normally they should be invoked after isigopen, wfdbinit, or
sampfreq, any of which will determine the duration of a sample interval and the base time
from a header file, or after defining these quantities using setsampfreq and setbasetime.
If this is not done, or if these time-conversion functions are used after wfdbquit, they will
perform conversions in units of seconds (i.e., the sample interval is taken to be one second
in such cases).

[ms]timstr

char *timstr(WFDB_Time t)
char *mstimstr(WFDB_Time t)

Return:

(char *) pointer to a string that represents the time

These functions convert times or time intervals into null-terminated ASCII strings. If the
argument, t, is greater than zero, it is treated as a time interval, and converted directly into
HH:MM:SS format by timstr, or to HH:MM:SS.SSS format by mstimstr, with leading
zero digits and colons suppressed. If t is zero or negative, it is taken to represent negated
elapsed time from the beginning of the record, and it is converted to a time of day using
the base time for the record as indicated by the ‘hea’ file or the caller (see [setbasetime],
page 48); in this case, if the base time is defined, the string will contain all digits even if
there are leading zeroes, it will include the date if a base date is defined, and it will be
marked as a time of day by being bracketed (e.g., ‘[08:45:00 23/04/1989]’). The result
of the conversion is truncated to a multiple of a second by timstr, or to a multiple of
a millisecond by mstimstr. Note in each case that the returned pointer addresses static
data (shared by timstr and mstimstr), the contents of which are overwritten by subsequent
calls. See [Example 3], page 76, for an illustration of the use of mstimstr; also see [Example
5], page 78, for an example of the use of timstr.

strtim

WFDB_Time strtim(char *string)

Return:

(WFDB_Time) >0
number of sample intervals corresponding to the argument interpreted as a time
interval

(WFDB_Time) <0
(negated) elapsed time in sample intervals from the beginning of the record,
corresponding to the argument interpreted as a time of day

Chapter 2: WFDB Library Functions 39

(WFDB_Time) 0
a legal return if the argument matches the base time; otherwise an error return
indicating an incorrectly formatted argument

This function converts an ASCII string in standard time format to a time in units of sample
intervals. Examples of standard time format:

2:14.875 2 minutes + 14.875 seconds

[13:6:0] 13:06 (1:06 PM)

[8:0:0 1] 8 AM on the day following the base date

[12:0:0 1/3/1992]
noon on 1 March 1992

143 143 seconds (2 minutes + 23 seconds)

4:02:01 4 hours + 2 minutes + 1 second

s12345 12345 sample intervals

c350.5 counter value 350.5

e time of the end of the record (if defined)

i time of the next sample in input signal 0

o (the letter ‘o’) time of the next sample in output signal 0

If the argument is bracketed (as in the second, third, and fourth examples), it is taken
as a time of day, and strtim uses the base time defined by the header file or by the caller
(see [setbasetime], page 48); in this case, the value returned is zero or negative (and
can be converted into elapsed time from the beginning of the record by simply negating
it). If the argument is not bracketed, it is taken as a time interval, and converted di-
rectly into a positive number of sample intervals. These notations match those used by
timstr and mstimstr, which are (approximately) inverse functions of strtim; in fact, for
MIT DB and AHA DB records (and any others with sampling frequencies below 1 KHz),
strtim(mstimstr(t)) = t, for any t. The ‘s’-format (as in the seventh example above) is
provided to allow “conversion” of time intervals already expressed in sample intervals. The
similar ‘c’-format converts counter values (see [getcfreq], page 48) into sample intervals.
The length of the record in sample intervals can be obtained using strtim("e"), which
evaluates to zero if this quantity is undefined. The sample number of the next sample to
be read or written can be determined using strtim("i") or strtim("o"). If the argument
string is incorrectly formatted, strtim returns zero (indistinguishable from a correct input
that evokes a zero output); this may be considered a feature. Several of the programs in
chapter 6 illustrate the use of strtim (for example, see [Example 7], page 81).

The next two functions convert between Julian dates and ASCII strings. Julian dates
as defined by astronomers begin at noon GMT; these begin at midnight local time.

datstr

char *datstr(WFDB_Date date)

Return:

40 WFDB Programmer’s Guide

(char *) pointer to a string that represents the date

This function converts the Julian date represented by date into an ASCII string in the form
DD/MM/YYYY.

strdat

WFDB_Date strdat(char *string)

Return:

(WFDB_Date)
Julian date corresponding to the argument

This function converts string into a Julian date. The argument should be in the format used
by datstr; if string is improperly formatted, strdat returns zero. Note that dates such as
‘15/3/89’ refer to the first century A.D., not the twentieth. For example, the interval in
days between the events commemorated by the French and American national holidays is
strdat("14/7/1789") – strdat("4/7/1776").

The next four functions convert between analog-to-digital converter (ADC) units and
physical units, using as a conversion factor the gain for the specified input signal. The first
two (aduphys and physadu) are general-purpose functions that convert absolute levels (i.e.,
they account for non-zero baseline values); the last two (adumuv and muvadu) are for use
with millivolt-dimensioned signals only, and convert potential differences (i.e., adumuv(s,
0) = muvadu(s, 0) = 0 for all s, irrespective of the baseline values specified in the header
file). Normally, these functions should be invoked after isigopen or wfdbinit, either of
which will determine the gain from the ‘hea’ file. If this is not done, or if the header file
indicates that the gain is uncalibrated, or if the specified input signal is not currently open, a
gain of WFDB_DEFGAIN (defined in ‘<wfdb/wfdb.h>’) ADC units per millivolt, and a baseline
of zero, are assumed. If the physical units (see Section 3.1 [Signal Information Structures],
page 56) are not millivolts, adumuv and muvadu convert to and from thousandths of the
defined physical units. Note that adumuv and muvadu deal exclusively with integers, but
aduphys returns and physadu accepts double-precision floating point physical values.

aduphys

double aduphys(WFDB_Signal s, WFDB_Sample a)

Return:

(double) physical value corresponding to a sample value of a ADC units

This function converts the sample value a from ADC units to physical units, based on the
gain and baseline for input signal s. (aduphys was first introduced in WFDB library
version 6.0.)

physadu

WFDB_Sample physadu(WFDB_Signal s, double v)

Return:

Chapter 2: WFDB Library Functions 41

(WFDB_Sample)
sample value, in ADC units, corresponding to v, in physical units

This function converts the value v from physical units to ADC units, based on the gain
and baseline for input signal s. (physadu was first introduced in WFDB library version
6.0.)

adumuv

int adumuv(WFDB_Signal s, WFDB_Sample a)

Return:

(int) number of microvolts corresponding to a ADC units

This function converts the potential difference a from ADC units to microvolts, based on
the gain for input signal s.

muvadu

WFDB_Sample muvadu(WFDB_Signal s, int v)

Return:

(int) number of ADC units corresponding to v microvolts

This function converts the potential difference v from microvolts to ADC units, based on
the gain for input signal s.

42 WFDB Programmer’s Guide

2.6 Calibration Functions

Functions in this section are used to determine specifications for calibration pulses and
customary scales for plotting signals. All of them make use of the calibration list, which is
maintained in memory and which contains entries for various types of signals.

calopen

int calopen(char *file)

Return:

0 Success

-1 Failure: insufficient memory for calibration list

-2 Failure: unable to open calibration file

This function reads the specified calibration file (which must be located in one of the
directories specified by WFDB, see Section 1.4 [WFDB path], page 16) into the calibration
list. If file is NULL, the file named by WFDBCAL is read. Normally, the current contents of
the calibration list are discarded before reading the calibration file; if file begins with ‘+’,
however, the ‘+’ is stripped from the file name and the contents of the file are appended to
the current calibration list. If file is ‘-’, calopen reads the standard input rather than a
calibration file. (This function was first introduced in WFDB library version 6.0.)

getcal

int getcal(char *desc, char *units, WFDB_Calinfo *cal)

Return:

0 Success; *cal contains the requested data

-1 Failure: no match found

This function attempts to find calibration data for signals of type desc, having physical
units as given by units. If successful, it fills in the contents of the WFDB_Calinfo structure
(see Section 3.2 [Calibration Information Structures], page 58) pointed to by cal. The caller
must allocate storage for the WFDB_Calinfo structure, and must not modify the contents
of the strings addressed by the sigtype and units fields of the WFDB_Calinfo structure
after getcal returns. getcal returns data from the first entry in the calibration list that
contains a sigtype field that is either an exact match or a prefix of desc, and a units
field that is an exact match of units; if either desc or units is NULL, however, it is ignored
for the purpose of finding a match. getcal cannot succeed unless the calibration list has
been initialized by a previous invocation of calopen or putcal. (This function was first
introduced in WFDB library version 6.0.)

putcal

int putcal(WFDB_Calinfo *cal)

Return:

Chapter 2: WFDB Library Functions 43

0 Success

-1 Failure: insufficient memory

This function adds the WFDB_Calinfo structure pointed to by cal to the end of the calibra-
tion list. (This function was first introduced in WFDB library version 6.0.)

newcal

int newcal(char *file)

Return:

0 Success

-1 Failure: unable to open file

This function creates a new calibration file (in the current directory) containing the contents
of the calibration list (which is not modified). file must satisfy the standard conditions for
a WFDB file name, i.e., it may contain letters, digits, or underscores. (This function was
first introduced in WFDB library version 6.0.)

flushcal

void flushcal()

This function discards the current calibration list and returns the memory that it occupied
to the heap. Note that wfdbquit does not perform the function of flushcal. (This function
was first introduced in WFDB library version 6.0.)

44 WFDB Programmer’s Guide

2.7 Miscellaneous WFDB Functions

newheader

int newheader(char *record)

Return:

0 Success

-1 Failure: unable to create header file

This function creates a ‘hea’ file (in the current directory, unless record includes path
information). Use newheader just after you have finished writing the signal files, but before
calling wfdbquit. If record begins with ‘+’, the ‘+’ is discarded and the remainder of record
is taken as the record name. Otherwise, all of record (excluding any path information) is
taken to be the record name. If the record name is ‘-’, the header file is written to the
standard output. Record names may include letters in lower or upper case, digits, and
underscores (‘_’); they may not include any other characters. If record does not conform to
these requirements, newheader will return −1; see [Example 8], page 84, for an illustration
of the use of newheader to check the validity of a record name. For compatibility with the
widest range of operating systems, keep record names short (6 characters or less) and avoid
those that are distinguished by case alone. To avoid confusion with MIT DB and AHA DB
records, do not use three- or four-digit record names.

setheader

int setheader(char *record, WFDB_Siginfo *siarray, unsigned int nsig)

Return:

0 Success

-1 Failure: unable to create header file

This function creates or recreates a header file (in the current directory) for the specified
record, based on the contents of the first nsig members of siarray. The preferred way to
create a header file for a new record is using newheader, which records signal checksum
and length variables maintained by putvec. The intended use of setheader is for editing
header files, e.g., to change recorded signal gains from a calibration program, or to add
signal descriptions or “info” strings. In the following code fragment, the header file for
record ‘old’ is used to create a header file for record ‘new’:

...
int nsig, status;
WFDB_Siginfo *s;

nsig = isigopen("old", NULL, 0);
s = (WFDB_Siginfo *)malloc(nsig * sizeof(WFDB_Siginfo));
nsig = isigopen("old", s, -nsig);
if (nsig > 0) {

Chapter 2: WFDB Library Functions 45

s[0].gain = 100.0;
status = setheader("new", s, (unsigned int)nsig);

}
...

The header file for record ‘new’ will contain the same signal information as that for record
‘old’, except that the gain for signal 0 will have been changed as shown. Any “info” strings
in the ‘hea’ file for record ‘old’ must be copied explicitly; see [getinfo], page 51, and see
[putinfo], page 51. (This function was first introduced in WFDB library version 5.0.)

setmsheader

int setmsheader(char *record, char *snarray[], unsigned int nsegments)

Return:

0 Success

-1 Failure: illegal record name, or no segments specified, or header not writable

-2 Failure: segment name too long, or insufficient memory

-3 Failure: attempt to nest multi-segment records, or unreadable segment header

-4 Failure: segment length unspecified, or numbers of signals or sampling frequen-
cies don’t match between segments

This function creates a header file (in the current directory) for a multi-segment record
(see Section 5.5 [Multi-Segment Records], page 68. snarray contains the names of the
segments, each of which must be an existing (single-segment) record; nsegments specifies
the number of segments in snarray. Once a header has been created by setmsheader, any
WFDB application can read the concatenated signal files of the constituent segment simply
by opening the multi-segment record (using isigopen or wfdbinit). Note that the signal
files themselves are not modified in any way, nor are they copied; rather, the other WFDB
library functions that read signals (getvec, getframe, isigsettime, and isgsettime)
automatically switch among the signal files of the segments as required. For an example of
the use of setmsheader, see ‘app/wfdbcollate.c’ in the WFDB Software Package. (This
function was first introduced in WFDB library version 9.1.)

wfdbquit

void wfdbquit(void)

This function closes all open WFDB files and frees any memory allocated by other WFDB
library functions. It also resets the following:

• the factors used for converting between samples, seconds, and counter values (reset to
1), the base time (reset to 0, i.e., midnight), and the base counter value (reset to 0);
see [timstr and strtim], page 38

• the parameters used for converting between adus and physical units (reset to WFDB_
DEFGAIN adu/mV, a quantity defined in ‘<wfdb/wfdb.h>’); see [aduphys and physadu],
page 40

46 WFDB Programmer’s Guide

• internal variables used to determine output signal specifications; see [newheader],
page 44.

If any annotations have been written out-of-order (see Section 5.10 [Annotation Order],
page 71), this function attempts to run ‘sortann’ (see the WFDB Applications Guide)
as a subprocess to restore the annotations to canonical order. If this cannot be done, it
prints a warning message indicating that the annotations are not in order, and providing
instructions for putting them in order.

Programs that do not write annotations or signals need not use wfdbquit. Note, however,
that several WFDB library functions allocate memory that is maintained for later use by
the library. This is not generally a problem, since these functions also free such memory if it
is no longer needed on a subsequent call; thus these ‘memory leaks’ do not grow over time.
Virtually all operating systems reclaim memory allocated by user-level applications on exit,
so that a small and self-limiting leak is not a problem. Nevertheless, there are embedded
systems and other environments in which memory is not reclaimed when a user application
exits, and in these cases it is best to invoke wfdbquit() on exit from any WFDB application,
even those that do not write output using the library. In an ANSI/ISO C environment, this
can be ensured by including the line

atexit(wfdbquit);

early in the code, before the first exit.

iannclose

void iannclose(WFDB_Annotator an)

This function closes the annotation file associated with input annotator an. It was first
introduced in WFDB library version 9.1.

oannclose

void oannclose(WFDB_Annotator an)

This function closes the annotation file associated with output annotator an. It was first
introduced in WFDB library version 9.1.

If any annotations have been written out-of-order (see Section 5.10 [Annotation Order],
page 71), this function attempts to run ‘sortann’ (see the WFDB Applications Guide)
as a subprocess to restore the annotations to canonical order. If this cannot be done, it
prints a warning message indicating that the annotations are not in order, and providing
instructions for putting them in order.

wfdbquiet

void wfdbquiet(void)

This function suppresses error reporting on the standard error output from the WFDB
library functions.

Chapter 2: WFDB Library Functions 47

wfdbverbose

void wfdbverbose(void)

This function can be used to restore normal error reporting after using wfdbquiet. (This
function was first introduced in WFDB library version 4.0.)

wfdberror

char *wfdberror(void)

Return:

(char *) pointer to error string

This function returns a pointer to a string containing the text of the most recent WFDB
library error message (or to a string containing the WFDB library version number, if there
have been no errors). Function wfdberror is primarily intended for use in applications for
which the standard error output is unavailable or inadequate, such as in X Window System
applications. (Note that this function may be unnecessary for MS-Windows applications,
since the MS-Windows version of the WFDB library generates a message box for error mes-
sages, unless wfdbquiet has been used to silence them.) This function was first introduced
in WFDB library version 4.5. Versions earlier than 9.4 return an empty string rather than
the library version number if there have been no errors.

sampfreq

WFDB_Frequency sampfreq(char *record)

Return:

(WFDB_Frequency)>0.
Success: the returned value is the sampling frequency in Hz

(WFDB_Frequency)-1.
Failure: unable to read header file

(WFDB_Frequency)-2.
Failure: incorrect header file format

This function determines the sampling frequency (in Hz) for the record specified by its
argument. If its argument is NULL, sampfreq returns the currently defined sampling
frequency, if any. It also sets the internal variables used by the time-conversion functions
(see [timstr and strtim], page 38) for converting between sample intervals and seconds.
See [Example 3], page 76, for an illustration of the use of sampfreq. Note that the value
returned by sampfreq for a multifrequency record depends on the current getvec mode
(see [setgvmode], page 28).

setsampfreq

int setsampfreq(WFDB_Frequency freq)

Return:

48 WFDB Programmer’s Guide

0 Success

-1 Failure: illegal sampling frequency specified (freq must not be negative)

This function sets the sampling frequency used by the time-conversion functions (see [timstr
and strtim], page 38). Use setsampfreq before creating a new ‘hea’ file (see [newheader],
page 44). See [Example 8], page 84, for an illustration of the use of setsampfreq.

setbasetime

int setbasetime(char *string)

Return:

0 Success

-1 Failure: incorrect string format

This function sets the base time used by the time-conversion functions timstr and strtim.
Its argument is a null-terminated ASCII string in HH:MM:SS format. An optional base
date in dd/mm/yyyy format can follow the time in string ; if present, the date should be
separated from the time by a space or tab character. If string is empty or NULL, the current
date and time are read from the system clock. Use setbasetime after defining the sampling
frequency and before creating a header file (see [newheader], page 44). See [Example 8],
page 84, for an illustration of the use of setbasetime.

Database records are sometimes obtained from analog tapes for which a tape counter is
available. Since many analog tape recorders lack elapsed time indicators, it is often useful
to identify events in the analog tape using counter values. A similar situation may arise
if a chart recording or other hard copy with numbered pages is to be compared with a
database record. To simplify cross-referencing between the analog tape or chart and the
digital database record, the WFDB library supports conversion of counter values (or page
numbers) to time. For this to be possible, the counter must be linear (i.e., it must change
at the same rate throughout the tape; this is not true of those that count the number of
revolutions of the supply or take-up reel), and the base counter value (the counter value or
page number corresponding to sample 0) and the counter frequency (the difference between
counter values separated by a one-second interval, or the reciprocal of the number of seconds
per page) must be defined. The following four functions, first introduced in WFDB library
version 5.2, are used to obtain or set the values of these parameters.

getcfreq

WFDB_Frequency getcfreq(void)

Return:

(WFDB_Frequency)
the counter frequency in Hz

This function returns the currently-defined counter frequency. The counter frequency is set
by the functions that read header files, or by setcfreq. If the counter frequency has not
been defined explicitly, getcfreq returns the sampling frequency.

Chapter 2: WFDB Library Functions 49

setcfreq

void setcfreq(WFDB_Frequency freq)

This function sets the counter frequency. Use setcfreq before creating a ‘hea’ file (see
[newheader], page 44). The effect of setcfreq is nullified by later invoking any of the
functions that read header files. If freq is zero or negative, the counter frequency is treated
as equivalent to the sampling frequency.

getbasecount

double getbasecount(void)

Return:

(double) base counter value

This function returns the base counter value, which is set by the functions that read
header files, or by setbasecount. If the base counter value has not been set explicitly,
getbasecount returns zero.

setbasecount

void setbasecount(double count)

This function sets the base counter value. Use setbasecount before creating a header file
(see [newheader], page 44). The effect of setbasecount is nullified by later invoking any
of the functions that read ‘hea’ files.

setwfdb

void setwfdb(char *string)

This function may be used to set or change the database path (see Section 1.4 [WFDB
path], page 16) within a running program. The argument points to a null-terminated
string that specifies the desired database path (but see the next paragraph for an ex-
ception). The string contains a list of locations where input files may be found. These
locations may be absolute directory names (such as ‘/usr/local/database’ under Unix,
or ‘d:/database’ under MS-DOS), relative directory names (e.g., ../mydata), or URL pre-
fixes (e.g., ‘http://www.physionet.org/physiobank/database’). If NETFILES support
is unavailable, any URL prefixes in the string are ignored. The special form ‘.’ refers to
the current directory. Entries in the list may be separated by whitespace or by semicolons;
under Unix, colons may also be used as separators. An empty component, indicated by an
initial or terminal separator, or by two consecutive separators, will be understood to specify
the current directory (which may also be indicated by a component consisting of a single
‘.’). If the string is empty or NULL, the database path is limited to the current directory.

If string begins with ‘@’, the remaining characters of string are taken as the name of a file
from which the WFDB path is to be read. This file may contain either the WFDB path, as
described in the previous paragraph, or another indirect WFDB path specification. Indirect
WFDB path specifications may be nested no more than ten levels deep (an arbitrary limit
imposed to avoid infinite recursion). Evaluation of indirect WFDB paths is deferred until

50 WFDB Programmer’s Guide

getwfdb is invoked, either explicitly or by the WFDB library while attempting to open
an input file (e.g., using annopen or isigopen). (The features described in this paragraph
were first introduced in WFDB library version 8.0.) See [getwfdb], page 50, for an example
of the use of setwfdb.

getwfdb

char *getwfdb(void)

Return:

(char *) pointer to the database path string

This function returns the current database path. For example, this code fragment
...
char *oldp, *newp;

oldp = getwfdb();
if (newp = malloc(strlen("/usr/mydb;") + strlen(oldp) + 1)) {

sprintf(newp, "/usr/mydb;%s", oldp);
setwfdb(newp);

}
...

adds the directory ‘/usr/mydb’ to the beginning of the database path. (The standard ‘/’
directory separator can be used, even under MS-DOS; if you elect to use the alternate ‘\’,
remember to quote it within a C string as ‘\\’.)

wfdbfile

char *wfdbfile(char *type, char *record)

Return:

(char *) pointer to a filename, or NULL

This function attempts to locate an existing WFDB file by searching the database path (see
Section 1.4 [WFDB path], page 16). Normally, the file is specified by its type (e.g., ‘hea’, or
an annotator name such as ‘atr’) and by the record to which it belongs. A file that does not
include a record name as part of its name can be found by wfdbfile if the name is passed
in the type variable and record is NULL. The string returned by wfdbfile includes the
appropriate component of the database path; since the database path may include empty
or non-absolute components, the string is not necessarily an absolute pathname. If the
WFDB library has been compiled with NETFILES support, and the WFDB path includes
one or more URL prefixes, the string returned may be a URL rather than a pathname. If
the file cannot be found, wfdbfile returns NULL. (This function was first introduced in
WFDB library version 4.3.)

wfdbflush

void wfdbflush(void)

Chapter 2: WFDB Library Functions 51

This function brings database output files up-to-date by forcing any output annotations or
samples that are buffered to be written to the output files.

getinfo

char *getinfo(char *record)

Return:

(char *) pointer to an “info” string, or NULL

This function reads an “info” string from the ‘hea’ file for the specified record. Info strings
are null-terminated and do not contain newline characters. The ‘hea’ files of some records
may contain no info strings; others may contain more than one info string. To read ad-
ditional info strings after the first, use getinfo(NULL). For example, the following code
fragment may be used to read and print all of the info for record ‘100s’:

...
char *info;

if (info = getinfo("100s"))
do {

puts(info);
} while (info = getinfo(NULL));

...

(This function was first introduced in WFDB library version 4.0.)

putinfo

int putinfo(char *s)

Return:

0 Success

-1 Failure: header not initialized

This function writes s as an “info” string into the ‘hea’ file that was created by the most
recent invocation of newheader. The string argument, s, must be null-terminated and
should not contain newline characters. No more than 254 characters may be written in a
single invocation of putinfo. Two or more info strings may be written to the same header
by successive invocations of putinfo. Note that newheader or setheader must be used
before putinfo. (This function was first introduced in WFDB library version 4.0.)

setibsize

int setibsize(int size)

Return:

>0 Success: the returned value is the new input buffer size in bytes

-1 Failure: buffer size could not be changed

52 WFDB Programmer’s Guide

-2 Failure: illegal value for size

This function can be used to change the default size of the input buffers allocated by
getvec. It cannot be used while input signals are open (i.e., after invoking isigopen or
wfdbinit and before invoking wfdbquit). If size is positive, the default input buffers will
be size bytes; if size is zero, the system default buffer size (BUFSIZ) is used. Note that the
default buffer size has no effect on reading signals for which an explicit buffer size is given
in the header file, i.e., those for which the bsize field of the WFDB_Siginfo structure (see
Section 3.1 [Signal Information Structures], page 56) is non-zero. (This function was first
introduced in WFDB library version 5.0.)

setobsize

int setobsize(int size)

Return:

>0 Success: the returned value is the new output buffer size in bytes

-1 Failure: buffer size could not be changed

-2 Failure: illegal value for size

This function can be used to change the default size of the output buffers allocated by
putvec. It cannot be used while output signals are open (i.e., after invoking osigopen or
osigfopen and before invoking wfdbquit). If size is positive, the default output buffers will
be size bytes; if size is zero, the system default buffer size (BUFSIZ) is used. Note that the
default buffer size has no effect on writing signals for which an explicit buffer size is given
in the ‘hea’ file read by osigopen, or in the bsize field of the WFDB_Siginfo structure (see
Section 3.1 [Signal Information Structures], page 56) passed to osigfopen. (This function
was first introduced in WFDB library version 5.0.)

wfdbgetskew

int wfdbgetskew(WFDB_Signal s)

Return:

(int) the skew (in frames) for input signal s

This function returns the skew (as recorded in the ‘hea’ file, but in frame intervals rather
than in sample intervals) of the specified input signal, or 0 if s is not a valid input signal
number. Since sample vectors returned by getvec or getframe are already corrected for
skew, wfdbgetskew is useful primarily for programs that need to rewrite existing ‘hea’ files,
where it is necessary to preserve the previously recorded skews. The following code fragment
demonstrates how this can be done:

char *record;
int nsig;
WFDB_Signal s;
static WFDB_Siginfo *si;

...

Chapter 2: WFDB Library Functions 53

if ((nsig = isigopen(record, NULL, 0)) < 1)
exit(1);

si = (WFDB_Siginfo *)malloc(nsig * sizeof(WFDB_Siginfo));
if (si == NULL || isigopen(record, siarray, nsig)!= nsig)

exit(1);
for (s = 0; s < nsig; s++) {

wfdbsetskew(s, wfdbgetskew(s));
wfdbsetstart(s, wfdbgetstart(s));

}
setheader(record, siarray, (unsigned)nsig);

Note that this function does not determine the skew between signals; the problem of doing so
is not possible to solve in the general case. wfdbgetskew merely reports what has previously
been determined by other means and recorded in the header file for the input record. (This
function was first introduced in WFDB library version 9.4.)

wfdbsetskew

void wfdbsetskew(WFDB_Signal s, int skew)

This function sets the specified skew (in frames) to be recorded by newheader or setheader
for signal s. For an example of the use of wfdbsetskew, see [wfdbgetskew], page 52. Note
that wfdbsetskew has no effect on the skew correction performed by getframe (or getvec),
which is determined solely by the skews that were recorded in the header file at the time
the input signals were opened. (This function was first introduced in WFDB library version
9.4.)

wfdbgetstart

long wfdbgetstart(WFDB_Signal s)

Return:

(long) the length of the prolog of the file that contains input signal s

This function returns the number of bytes in the prolog of the signal file that contains
the specified input signal, as recorded in the header file. Note that wfdbgetstart does
not determine the length of the prolog by inspection of the signal file; it merely reports
what has been determined by other means and recorded in the ‘hea’ file. Since the pro-
log is not readable using the WFDB library, and since functions such as isigopen and
isigsettime take the prolog into account when calculating byte offsets for getframe and
getvec, wfdbgetstart is useful primarily for programs that need to rewrite existing ‘hea’
files, where it is necessary to preserve the previously recorded byte offsets. For an example
of how this can be done, see [wfdbgetskew], page 52. (This function was first introduced in
WFDB library version 9.4.)

wfdbsetstart

void wfdbsetstart(WFDB_Signal s, long bytes)

54 WFDB Programmer’s Guide

This function sets the specified prolog length (bytes) to be recorded by newheader or
setheader for signal s. For an example of the use of wfdbsetstart, see [wfdbgetskew],
page 52. Note that wfdbsetstart has no effect on the calculations of byte offsets within
signal files as performed by isigsettime, which are determined solely by the contents of
the ‘hea’ file at the time the signals were opened. (This function was first introduced in
WFDB library version 9.4.)

Chapter 3: Data Types 55

3 Data Types

Simple data types used by the WFDB library are defined in ‘<wfdb/wfdb.h>’. These include:

WFDB_Sample
a signed integer type (at least 16 bits) used to represent sample values, in units
of adus.

WFDB_Time
a signed integer type (at least 32 bits) used to represent times and time intervals,
in units of sample intervals. Only the magnitude is significant; the sign of a
WFDB_Time variable indicates how it is to be printed by timstr or mstimstr.

WFDB_Date
a signed integer type (at least 32 bits) used to represent Julian dates, in units
of days.

WFDB_Frequency
a floating point type used to represent sampling and counter frequencies, in
units of Hz.

WFDB_Gain
a floating point type used to represent signal gains, in units of adus per physical
unit.

WFDB_Group
an unsigned integer type used to represent signal group numbers.

WFDB_Signal
an unsigned integer type used to represent signal numbers.

WFDB_Annotator
an unsigned integer type used to represent annotator numbers.

Composite data types used by the WFDB library are also defined in ‘<wfdb/wfdb.h>’. These
types, described in detail in the following sections, include:

WFDB_Siginfo
an object containing the name and global attributes of a given signal.

WFDB_Calinfo
an object containing calibration specifications for signals of a given type.

WFDB_Anninfo
an object containing the name and attributes of a given annotator.

WFDB_Annotation
an object describing one or more attributes of one or more signals at a given
time.

56 WFDB Programmer’s Guide

3.1 Signal Information Structures

The siarray argument for isigopen, osigopen, wfdbinit, and osigfopen is a pointer
to an array of objects of type WFDB_Siginfo. The first three of these functions fill in
the WFDB_Siginfo objects to which siarray points, but the caller must supply initialized
WFDB_Siginfo objects to osigfopen. Each object specifies the attributes of a signal:

char *fname
a pointer to a null-terminated string that names the file in which samples of the
associated signal are stored. Input signal files are found by prefixing fname with
each of the components of the database path in turn (see Section 1.4 [WFDB
path], page 16). fname may include relative or absolute path specifications
if necessary; the use of an absolute pathname, combined with an initial null
component in WFDB, reduces the time needed to find the signal file to a minimum.
If fname is ‘-’, it refers to the standard input or output.

char *desc
a pointer to a null-terminated string without embedded newlines (e.g., ‘ECG
lead V1’ or ‘trans-thoracic impedance’). The length of the desc string is
restricted to a maximum of WFDB_MAXDSL (defined in ‘<wfdb/wfdb.h>’) charac-
ters, not including the null.

char *units
a pointer to a null-terminated string without embedded whitespace. The string
specifies the physical units of the signal; if NULL, the units are assumed to
be millivolts. The length of the units string is restricted to a maximum of
WFDB_MAXUSL (defined in ‘<wfdb/wfdb.h>’) characters (not including the null).

WFDB_Gain gain
the number of analog-to-digital converter units (adus) per physical unit (see pre-
vious item) relative to the original analog signal; for an ECG, this is roughly
equal to the amplitude of a normal QRS complex. If gain is zero, no ampli-
tude calibration is available; in this case, a gain of WFDB_DEFGAIN (defined in
‘<wfdb/wfdb.h>’) may be assumed.

WFDB_Sample initval
the initial value of the associated signal (i.e., the value of sample number 0).

WFDB_Group group
the signal group number. All signals in a given group are stored in the same file.
If there are two or more signals in a group, the file is called a multiplexed signal
file. Group numbers begin at 0; arrays of WFDB_Siginfo structures are always
kept ordered with respect to the group number, so that signals belonging to the
same group are described by consecutive entries in siarray.

int fmt the signal storage format. The most commonly-used formats are format 8 (8-bit
first differences), format 16 (16-bit amplitudes), and format 212 (pairs of 12-bit
amplitudes bit-packed into byte triplets). See ‘<wfdb/wfdb.h>’ for a complete
list of supported formats. All signals belonging to the same group must be
stored in the same format.

Chapter 3: Data Types 57

int spf the number of samples per frame. This is 1, for all except oversampled signals
in multi-frequency records, for which spf may be any positive integer. Note
that non-integer values are not permitted (thus the frame rate must be chosen
such that all sampling frequencies used in the record are integer multiples of
the frame rate).

int bsize the block size, in bytes. For signal files that reside on Unix character device
special files (or their equivalents), the bsize field indicates how many bytes
must be read or written at a time (see Section 5.7 [Special Files], page 69). For
ordinary disk files, bsize is zero. All signals belonging to a given group have
the same bsize.

int adcres
the ADC resolution in bits. Typical ADCs have resolutions between 8 and 16
bits inclusive.

int adczero
the ADC output given an input that falls exactly at the center of the ADC
range (normally 0 VDC). Bipolar ADCs produce two’s complement output; for
these, adczero is usually zero. For the MIT DB, however, an offset binary
ADC was used, and adczero was 1024.

int baseline
the value of ADC output that would map to 0 physical units input. The value
of adczero is not synonymous with that of baseline (the isoelectric or physical
zero level of the signal); the baseline is a characteristic of the signal, while
adczero is a characteristic of the digitizer. The value of baseline need not
necessarily lie within the output range of the ADC; for example, if the units
are ‘degrees_Kelvin’, and the ADC range is 200–300 degrees Kelvin, baseline
corresponds to absolute zero, and lies well outside the range of values actually
produced by the ADC.

long nsamp
the number of samples in the signal. (Exception: in multi-frequency records,
nsamp is the number of samples divided by spf, see above, i.e., the number of
frames.) All signals in a given record must have the same nsamp. If nsamp is
zero, the number of samples is unspecified, and the cksum (see the next item)
is not used; this is useful for specifying signals that are obtained from pipes,
for which the length may not be known.

int cksum a 16-bit checksum of all samples. This field is not usually accessed by application
programs; newheader records checksums calculated by putvec when it creates a
new ‘hea’ file, and getvec compares checksums that it calculates against cksum
at the end of the record, provided that the entire record was read through
without skipping samples.

The number of WFDB_Siginfo structures in siarray is given by the nsig argument of the
functions that open signal files. Input and output signal numbers are assigned beginning
with 0 in the order in which the signals are given in siarray. Note that input signal 0
and output signal 0 are distinct. Input signal numbers are supplied to aduphys, physadu,

58 WFDB Programmer’s Guide

adumuv, and muvadu in their first arguments. See [Example 5], page 78, for an illustration
of how to read signal specifications from WFDB_Siginfo structures.

3.2 Calibration Information Structures

The cal argument for getcal and putcal is a pointer to an object of type WFDB_Calinfo.
A WFDB_Calinfo object contains information about signals of a specified type:

char *sigtype
a pointer to a null-terminated string without embedded tabs or newlines. This
field describes the type(s) of signals to which the calibration specifications apply.
Usually, sigtype is an exact match to (or a prefix of) the desc field of the
WFDB_Siginfo object that describes a matching signal.

char *units
a pointer to a null-terminated string without embedded whitespace. This field
specifies the physical units of signals to which the calibration specifications
apply. Usually, the units field of a WFDB_Calinfo structure must exactly match
the units field of the WFDB_Siginfo structure that describes a matching signal.

double scale
the customary plotting scale, in physical units per centimeter. WFDB appli-
cations that produce graphical output may use scale as a default. Except
in unusual circumstances, signals of different types should be plotted at equal
multiples of their respective scales.

double low
double high

values (in physical units) corresponding to the low and high levels of a calibra-
tion pulse. If the signal is AC-coupled (see below), low is zero, and high is the
pulse amplitude.

int caltype
a small integer that specifies the shape of the calibration pulse (see
‘<wfdb/wfdb.h>’ for definitions). caltype is even if signals of the
corresponding sigtype are AC-coupled, and odd if they are DC-coupled.

The calibration list is a memory-resident linked list of WFDB_Calinfo structures. It is
accessible only via calopen, getcal, putcal, newcal, and flushcal.

3.3 Annotator Information Structures

The aiarray argument for annopen and wfdbinit is a pointer to an array of objects of
type WFDB_Anninfo. Each member of the array contains information provided to annopen
and wfdbinit about an annotation file associated with the record:

char *name
the annotator name. The name ‘atr’ is reserved for a reference annotation
file supplied by the creator of the database record to document its contents as
accurately and thoroughly as possible. You may use other annotator names to

Chapter 3: Data Types 59

identify annotation files that you create; unless there are compelling reasons not
to do so, follow the convention that the annotator name is the name of the file’s
creator (a program or a person). To avoid confusion, do not use ‘dat’, ‘datan ’,
‘dn ’, or ‘hea’ (all of which are commonly used as parts of WFDB file names) as
annotator names. The special name ‘-’ refers to the standard input or output.
Other annotator names may contain upper- or lower-case letters, digits, and
underscores. Annotation files are normally created in the current directory and
found in any of the directories in the database path (see Section 1.4 [WFDB
path], page 16).

int stat the file type/access code. Usually, stat is either WFDB_READ or WFDB_WRITE, to
specify standard (“MIT format”) annotation files to be read by getann or to
be written by putann. Both MIT DB and AHA DB annotation files are kept
on-line in MIT format. The symbols WFDB_READ and WFDB_WRITE are defined
in ‘<wfdb/wfdb.h>’. An AHA-format annotation file can be read by getann or
written by putann if the stat field is set to WFDB_AHA_READ or WFDB_AHA_WRITE
before calling annopen or wfdbinit (see [Example 2], page 74). Other formats
may be supported via a similar mechanism; consult ‘<wfdb/wfdb.h>’ for more
information.

The number of WFDB_Anninfo objects in aiarray is given by the nann argument of
annopen and wfdbinit. The annotation-reading function, getann, knows the annotators
by number only; annopen and wfdbinit assign input annotator numbers beginning with
0 in the order in which they are given in the array of WFDB_Anninfo objects. Output an-
notator numbers used by putann also start at 0; note that input annotator 0 and output
annotator 0 are distinct. Annotator numbers are supplied to getann and putann in their
first arguments. See [annopen], page 22, for an example of how to set the contents of an
array of WFDB_Anninfo objects.

3.4 Annotation Structures

The annot argument of getann and putann is an object of type WFDB_Annotation con-
taining these fields:

long time time of the annotation, in samples from the beginning of the record. The times
of beat annotations in the ‘atr’ files for the MIT DB generally coincide with
the R-wave peak in signal 0; for the AHA DB, they generally coincide with the
PQ-junction.

char anntyp
annotation code; an integer between 1 and ACMAX. See Chapter 4 [Annota-
tion Codes], page 61, for a list of legal annotation codes. ACMAX is defined in
‘<wfdb/ecgcodes.h>’.

signed char subtyp
signed char chan
signed char num

numbers between −128 and 127. In MIT DB ‘atr’ files, the subtyp field is used
with noise and artifact annotations to indicate which signals are affected (see

60 WFDB Programmer’s Guide

Chapter 4 [Annotation Codes], page 61). The chan field is intended to indicate
the signal to which the annotation is attached. More than one annotation may
be written with the same time if the chan fields are distinct and in ascending
order. The semantics of the chan field are unspecified, however; users may
assign any desired meaning, which need not have anything to do with signal
numbers. In user-created annotation files, these fields can be used to store
arbitrary small integers. The subtyp field requires no space in a standard
annotation file unless it is non-zero; the chan and num fields require no space
unless they have changed since the previous annotation.

char *aux a free text string. The first byte is interpreted as an unsigned char that spec-
ifies the number of bytes that follow (up to 255). In MIT DB ‘atr’ files, the
aux field is used with rhythm change annotations to specify the new rhythm,
and with comment annotations to store the text of the comment (see Chapter 4
[Annotation Codes], page 61). The string can contain arbitrary binary data,
including embedded nulls. It is unwise to store anything but ASCII strings,
however, if the annotation file may be transported to a system with a different
architecture (e.g., on which multiple-byte quantities may have different sizes or
byte layouts). The aux field requires no space in a standard annotation file if
it is NULL. Note that conversion of annotation files to other formats may entail
truncation or loss of the aux string. Note also that the aux pointer returned
by getann points to a small static buffer (separately allocated for each input
annotator beginning with WFDB library version 9.4) that may be overwritten
by subsequent calls.

See [Example 3], page 76, for a short program that examines the contents of a WFDB_
Annotation.

Chapter 4: Annotation Codes 61

4 Annotation Codes

Application programs that deal with annotations should include the line
#include <wfdb/ecgcodes.h>

which provides the symbolic definitions of annotation codes given in the first column of the
table below. (The second column of the table shows the strings returned by annstr and
ecgstr.)

Beat annotation codes:
NORMAL N Normal beat
LBBB L Left bundle branch block beat
RBBB R Right bundle branch block beat
BBB B Bundle branch block beat (unspecified)
APC A Atrial premature beat
ABERR a Aberrated atrial premature beat
NPC J Nodal (junctional) premature beat
SVPB S Supraventricular premature or ectopic beat (atrial or nodal)
PVC V Premature ventricular contraction
RONT r R-on-T premature ventricular contraction
FUSION F Fusion of ventricular and normal beat
AESC e Atrial escape beat
NESC j Nodal (junctional) escape beat
SVESC n Supraventricular escape beat (atrial or nodal) [1]
VESC E Ventricular escape beat
PACE / Paced beat
PFUS f Fusion of paced and normal beat
UNKNOWN Q Unclassifiable beat
LEARN ? Beat not classified during learning

Non-beat annotation codes:
VFON [Start of ventricular flutter/fibrillation
FLWAV ! Ventricular flutter wave
VFOFF] End of ventricular flutter/fibrillation
NAPC x Non-conducted P-wave (blocked APC) [4]
WFON (Waveform onset [4]
WFOFF) Waveform end [4]
PWAVE p Peak of P-wave [4]
TWAVE t Peak of T-wave [4]
UWAVE u Peak of U-wave [4]
PQ ‘ PQ junction
JPT ’ J-point
PACESP ^ (Non-captured) pacemaker artifact
ARFCT | Isolated QRS-like artifact [2]
NOISE ~ Change in signal quality [2]
RHYTHM + Rhythm change [3]
STCH s ST segment change [1,3]
TCH T T-wave change [1,3,4]

62 WFDB Programmer’s Guide

SYSTOLE * Systole [1]
DIASTOLE D Diastole [1]
MEASURE = Measurement annotation [1,3]
NOTE " Comment annotation [3]
LINK @ Link to external data [5]

Notes:

1. Codes SVESC, STCH, and TCH were first introduced in WFDB library version 4.0. Codes
SYSTOLE, DIASTOLE, and MEASURE were first introduced in WFDB library version 7.0.

2. In MIT and ESC DB ‘atr’ files, each non-zero bit in the subtyp field indicates that
the corresponding signal contains noise (the least significant bit corresponds to signal
0).

3. The aux field contains an ASCII string (with prefixed byte count) describing the
rhythm, ST segment, T-wave change, measurement, or the nature of the comment.
By convention, the character that follows the byte count in the aux field of a RHYTHM
annotation is ‘(’. See the MIT-BIH Arrhythmia Database Directory for a list of rhythm
annotation strings.

4. Codes WFON, WFOFF, PWAVE, TWAVE, and UWAVE were first introduced in DB library version
8.3. The ‘p’ mnemonic now assigned to PWAVE was formerly assigned to NAPC, and the
‘t’ mnemonic now assigned to TWAVE was formerly assigned to TCH. The obsolete codes
PQ (designating the PQ junction) and JPT (designating the J-point) are still defined in
‘<wfdb/ecgcodes.h>’, but are identical to WFON and WFOFF respectively.

5. The LINK code was first introduced in WFDB library version 9.6. The aux field
of a LINK annotation contains a URL (a uniform resource locator, in the form
‘http://machine.name/some/data’, suitable for passing to a Web browser such as
Netscape or Mosaic). LINK annotations may be used to associate extended text,
images, or other data with an annotation file. If the aux field contains any whitespace,
text following the first whitespace is taken as descriptive text to be displayed by a
WFDB browser such as WAVE.

The annotation codes in the table above are the predefined values of the anntyp
field in a WFDB_Annotation. Other values in the range of 1 to ACMAX (defined in
‘<wfdb/ecgcodes.h>’) are legal but do not have preassigned meanings. The constant
NOTQRS, also defined in ‘<wfdb/ecgcodes.h>’, is not a legal value for anntyp, but is a
possible output of the macros discussed below.

4.1 Macros for Mapping Annotation Codes

Application programs that use the macros described in this section should include the
line

#include <wfdb/ecgmap.h>

which will make their definitions, and those in ‘<wfdb/ecgcodes.h>’, available.

isann(c) true (1) if c is a legal annotation code, false (0) otherwise

isqrs(c) true (1) if c denotes a QRS complex, false (0) otherwise

map1(c) maps c into one of the set {NOTQRS, NORMAL, PVC, FUSION, LEARN}

Chapter 4: Annotation Codes 63

map2(c) maps c into one of the set {NOTQRS, NORMAL, SVPB, PVC, FUSION, LEARN}

annpos(c)
maps c into one of the set {APUNDEF, APSTD, APHIGH, APLOW, APATT, APAHIGH,
APALOW} (see ‘<wfdb/ecgmap.h>’ for definitions of these symbols; this macro
was first introduced in WFDB library version 6.0)

If you define your own annotation codes, you may wish to modify the tables used by the
macros above. The file ‘<wfdb/ecgmap.h>’ also defines setisqrs(c, x), setmap1(c, x),
setmap2(c, x), and setannpos(c, x) for this purpose. In each case, x is the value to be
returned when the corresponding mapping macro is invoked with an argument of c. (These
macros were first introduced in WFDB library version 6.0.)

The macros below convert between AHA and MIT annotation codes; they are also defined
in ‘<wfdb/ecgmap.h>’.

ammap(a) maps a (an AHA annotation code) into an MIT annotation code (one of the
set {NORMAL, PVC, FUSION, RONT, VESC, PACE, UNKNOWN, VFON, VFOFF, NOISE,
NOTE}), or NOTQRS

mamap(c, s)
maps c (an MIT annotation code) into an AHA annotation code (one of the set
{‘N’, ‘V’, ‘F’, ‘R’, ‘E’, ‘P’, ‘Q’, ‘[’, ‘]’, ‘U’, ‘O’}); s is the MIT annotation subtyp
(significant only if c is NOISE)

64 WFDB Programmer’s Guide

Chapter 5: Database Files 65

5 Database Files

The WFDB library has been constructed to provide a standard interface between the
database files and application programs. Alternate means of access to database files is
strongly discouraged, since file formats may change. Database files are located in the
directories specified by WFDB (see Section 1.4 [WFDB path], page 16).

Recall that a WFDB record is not a file; rather, it is an extensible collection of
database files (see [Records], page 1). Thus, for example, record 100 of the MIT-BIH
Arrhythmia Database consists of the files named ‘100.hea’, ‘100.dat’, and ‘100.atr’ in
the ‘mitdb’ directory of the MIT-BIH Arrhythmia Database CD-ROM (or in PhysioBank,
within http://www.physionet.org/physiobank/database/mitdb/), together with any
additional files in other directories that you may have associated with record 100 (such as
your own annotation file). All files associated with a given record include the record name
as the first part of the file name. No explicit action (other than choosing the file name,
and locating the file in the WFDB path) is needed in order to associate a new file with an
existing WFDB record.

To find the location of a database file easily, you can use ‘wfdbwhich’, an application
included with the WFDB Software Package. Type wfdbwhich for brief instructions on its
use, or see the WFDB Applications Guide.

5.1 File Types

There are four types of files supported by the WFDB library:

Header Files

Header files have names of the form ‘record.hea’, where record is the record name.
(MIT DB records are named 100–124 and 200–234 with some numbers missing. AHA DB
records are named 1001–1010, 2001–2010, 3001–3010, 4001–4010, 5001–5010, 6001–6010,
7001–7010, and 8001–8010. ESC DB records are named e0103–e1304, with many numbers
missing.) Header files are text files, with lines terminated by ASCII carriage-return/line-feed
pairs, created by newheader, setheader, or setmsheader, from which isigopen, osigopen,
and wfdbinit read the names of the signal files and their attributes as given in the array
of WFDB_Siginfo objects; sampfreq also reads a header file to determine the sampling
frequency used for a record.

Signal Files

Signal files usually have names of the form ‘record.dat’. (The .dat suffix is conven-
tional, but not required; any file name acceptable to the operating system is permissible.)
Signal files are binary, and usually contain either 16-bit amplitudes (format 16), pairs of
12-bit amplitudes bit-packed into byte triplets (format 212), or 8-bit first differences (format
8). (See ‘<wfdb/wfdb.h>’ for information about other formats that are supported.) The
functions that read and write signal files perform appropriate transformations so that the
samples visible to the application program are always amplitudes of type int (at least 16
bits), regardless of the signal file format.

http://www.physionet.org/physiobank/database/mitdb/

66 WFDB Programmer’s Guide

Annotation Files

Annotation files have names of the form ‘record.annotator ’. Those named
‘record.atr’ are reference annotation files (assumed to be correct). Annotation files
are binary, and contain records of variable length that average slightly over 16 bits per
annotation.

Calibration Files

Unlike header, signal, and annotation files, calibration files are not associated with in-
dividual records. A calibration file is needed only if you have records containing signals
other than ECGs; in this case, it is likely that a single calibration file will be adequate
for use with all of your records. Calibration files are text files, with lines terminated by
ASCII carriage-return/line-feed pairs, created by newcal, from which calopen reads the
calibration list (see Section 3.2 [Calibration Information Structures], page 58). The WFDB
Software Package includes a standard calibration file, ‘wfdbcal’, in the ‘data’ directory.

AHA Format Files

The “AHA Format” was defined in 1980 for storage of database records on 9-track digital
tape. Signal files in AHA format are in format 16, with two signals multiplexed into one
file (see Section 5.3 [Multiplexed Signal Files], page 67), and may be read and written using
getvec and putvec. AHA-format annotation files are binary, and contain fixed-length (16-
byte) annotation records. An annotation file in AHA format may be read or written using
getann or putann, if the stat field of the WFDB_Anninfo object is set to WFDB_AHA_READ or
WFDB_AHA_WRITE before opening the file. annopen recognizes the format of input annotation
files automatically and prints a warning if the format does not match what was expected
on the basis of stat. AHA format annotation files may be converted to standard format
without loss of information, and doing so reduces the storage requirement by a factor of
eight.

Yet another format has been used more recently for distribution of AHA DB files on
floppy diskettes and CD-ROMs. This format is compatible with neither the original AHA
format nor with any of the formats supported directly by the WFDB library. Programs
‘a2m’ and ‘ad2m’, supplied with the WFDB Software Package, can convert files in this format
(as well as those in the original AHA format) to the standard formats.

5.2 Using Standard I/O for Database Files

If ‘-’ is supplied as a record name to any of the functions that read or write header files,
the ‘hea’ file is taken to be the standard input or output, as appropriate. If the name of a
signal file is specified in the ‘hea’ file (or in the array of WFDB_Siginfo objects passed to
osigfopen) as ‘-’, the standard input (output) is used by getvec (putvec). If the name
of an annotator is given in the array of WFDB_Anninfo objects as ‘-’, the standard input
(output) is used by getann (putann). If the name of a calibration file is given as ‘-’, the
standard input (output) is used by calopen (newcal).

Chapter 5: Database Files 67

Under MS-DOS, these features may not always be usable, since the standard input and
output are usually opened in “text” mode (which is unsuitable for binary database files).

Although the WFDB library does not forbid the use of the standard input or output for
more than one function (e.g., as both a signal file and an annotation file), such use is in
general a gross error that is likely to lead to unintended results.

5.3 Multiplexed Signal Files

Multiplexed signal files may be identified by examining the group fields of the array of
WFDB_Siginfo objects returned by isigopen or wfdbinit. Signals belonging to the same
group are multiplexed together in the same file. If all signals in a given signal file have been
sampled at the same frequency, and there are n signals in the file, then each group of n
successive samples in that file contains a sample from each signal, always in the same order
(but see Section 5.4 [Multi-Frequency Records], page 67).

Multiplexed signal files can be useful if the storage device is sequential-access only (e.g.,
9-track tape), if the storage device has lengthy seek times (e.g., optical disk), if many signals
must be recorded and Unix’s per-process limit on open files would otherwise be exceeded, or
if very high speed is required while the file is being created (because of sampling constraints).
CD-ROM signal files, and those available from PhysioNet, are multiplexed unless the record
contains only one signal.

5.4 Multi-Frequency Records

When signals of different types are recorded simultaneously and for lengthy periods, it
may be appropriate to choose different sampling frequencies in order to reduce the storage
requirements for signals of limited bandwidth. The support for multi-frequency records
provided in WFDB library version 9.0 (and later versions) allows application programs to
read and write records containing signals digitized at multiple sampling frequencies. In a
multi-frequency record, a frame of samples contains one or more samples from each signal.
The frame rate (base sampling frequency) of the record, as recorded in the header file and
as normally returned by sampfreq, is defined as the number of frames per second. Signals
sampled at multiples of the frame rate are referred to as oversampled signals. For each
signal, a frequency multiplier specifies how many samples are included in each frame. The
frequency multiplier (1 by default) is an integer, encoded within the format field in the
header file, and specified in the spf field of the WFDB_Siginfo structure for the signal.

A frame can be read as it was written (see [getframe], page 30) by an application
that has been written to make use of multi-frequency records. Applications that are not
“multi-frequency aware” can still read signals using the standard getvec interface, which
returns (as always) one sample per signal on each invocation. By default, getvec reads
multi-frequency records in low-resolution mode. In this mode, each oversampled signal is
resampled at the frame rate by averaging all of its samples in each frame.

The function setgvmode can be used to select high-resolution mode, in which getvec
replicates samples of signals digitized at less than the maximum sampling frequency (i.e.,
using zero-order interpolation) so that each sample of an oversampled signal appears in at
least one sample vector returned by getvec. In this mode, sampfreq returns the number of

68 WFDB Programmer’s Guide

samples per signal returned by getvec per second of the record. Furthermore (when using
WFDB library version 9.6 and later versions), all time quantities passed to and from the
WFDB library functions are understood to be in units of these shorter sampling intervals;
thus, for example, getann converts times in frame numbers (as recorded in annotation files)
into times in sample numbers before filling in the caller’s annotation structure, and putann
converts times in sample numbers into times in frame numbers before writing annotations
into annotation files. This permits applications that are not “multi-frequency aware” to
read multi-frequency records with the highest possible resolution.

The operating mode used by getvec, if not specified by an explicit call to setgvmode, is
determined by the value of the environment variable WFDBGVMODE if it is set, and otherwise by
the value of DEFWFDBGVMODE in ‘wfdblib.h’ at the time the library was compiled.. In either
case, a value of 0 selects low-resolution mode, and any other value selects high-resolution
mode.

5.5 Multi-Segment Records

A multi-segment record consists of two or more concatenated segments. Each segment
is an ordinary WFDB record, with its own header file and signal file(s). In any given multi-
segment record, all signals must appear in the same order within each segment (signals
may not be omitted), and the sampling frequency of any given signal must be the same
in each segment. Segments of multi-segment records must be ordinary records (it is not
permitted to nest one multi-segment record within another, for example), and the length
of each segment must be specified (the WFDB library does not impose this requirement
on ordinary records that are not part of a multi-segment record). There are no other
restrictions on segments; specifically, it is permitted to mix segments with different storage
formats, and for any segment to appear more than once. A special header file (created either
manually or by using setmsheader) specifies the record name for each segment in a multi-
segment record. Once this special header exists, the multi-segment record can be read by
any WFDB application. Note that only the signal files of the segments are “linked” by the
multi-segment record’s header; annotation files associated with the individual segments are
not readable as part of the multi-segment record (although an annotation file associated
directly with the multi-segment record can be created and read just as for an ordinary
record). From the point of view of a WFDB application, reading a multi-segment record
is exactly like reading an ordinary record; specifically, isigsettime works as expected,
permitting jumps forward and backward between as well as within segments. Version 9.1
of the WFDB library is the first to support reading and writing multi-segment records.

5.6 Simultaneous Access to Multiple Records

Selection functions that accept record arguments (annopen, isigopen, osigopen, and
wfdbinit) normally close any active database files of the types with which each deals before
proceeding. The argument +record is synonymous with record, but has the effect of causing
these functions to leave any active files open. (For convenience, the other functions that
accept record arguments — sampfreq, newheader, and setheader — also treat record and
+record as synonymous, but without any noticeable effect.) The restrictions on the total
numbers of signals and annotation files still apply.

Chapter 5: Database Files 69

If the sampling frequencies or lengths of the records do not match, a warning mes-
sage will be produced (unless wfdbquiet was invoked). The time-conversion functions (see
[timstr and strtim], page 38) will continue to use the sampling frequency and base time
defined for the first record that was opened, unless these attributes are reset by sampfreq,
setsampfreq, or setbasetime.

Function calopen uses the ‘+’ convention for calibration file names. Although it nor-
mally creates the calibration list from scratch each time it is called, it retains the current
calibration list if the calibration file name is prefixed by ‘+’.

5.7 Signals That Are Not Stored in Disk Files

The fname component of a WFDB_Siginfo object can be any string acceptable as a
file name to your operating system. Under Unix, for example, signals can be read from
(or written to) ‘special’ files such as ‘/dev/rmt0’ (the raw tape drive). If I/O must be
performed in fixed-size blocks (such as for Unix character devices), the bsize component of
the WFDB_Siginfo object must contain the appropriate block size in bytes. In such cases,
the WFDB library must obtain (using malloc (see K&R, page 167) an amount of memory
equal to the size of one block when the signal file is first opened. For large programs running
on 16-bit machines, this can cause problems if signal files with large block sizes are read.
(In such cases, isigopen or osigopen will not open the signal file if there is not enough
memory to allocate a buffer.) Under Unix, if this problem occurs, use the “piped records”
(see Section 5.8 [Piped and Local Records], page 70) instead. The usual method is to read
or write the signal file using a utility such as Unix’s dd and to pipe the data to or from the
application program. Although this approach is flexible, there are a few drawbacks:

1. While reading piped input, the standard input cannot be used for other purposes by the
application program. Interactive programs can avoid problems by opening ‘/dev/tty’
for I/O, however.

2. Programs that use isigsettime or isgsettime cannot perform backward skips on
piped input, and forward skips can be quite slow.

3. Additional system resources (computation time, process slots, and memory) are needed
when using pipes, in comparison with the usual method of operation.

Several special-purpose header files allow application programs to read data directly from
9-track tape. When the WFDB Software Package is installed, these files are copied into
the ‘tape’ subdirectory of the system-wide database directory. The record names associ-
ated with most of these header files (‘tape/512’, ‘tape/1024’, ‘tape/4096’, ‘tape/10240’)
specify the block size in bytes. These use 16-bit format, 250 Hz samples, 12 bit ADC with
zero ADC offset, two signals multiplexed into one, and data to be read from ‘/dev/rmt0’.
Record ‘tape/6144d’ uses 8-bit difference format, 6144 bytes/block, and is otherwise similar
to the others. Records ‘tape/ahatape’ and ‘tape/mittape’ can be used to read or write
an AHA-format signal file on a 9-track tape that has been positioned to the beginning of
the correct file; the signal file for these is ‘/dev/nrmt0’ (the non-rewinding raw tape drive).
If the tape density is encoded into the tape drive name on your system, additional header
files may be needed.

70 WFDB Programmer’s Guide

5.8 Piped and Local Records

Piped record header files allow application programs to read signals from the standard
input, or write them to the standard output. Record ‘8’ specifies 8-bit format, a 10-bit ADC,
zero ADC offset, and two signals sampled at 250 Hz, both of which are to be acquired from
the standard input, or written to the standard output. Record ‘16’ specifies 16-bit format
and a 12-bit ADC, and is otherwise identical to record ‘8’. ADCs from several manufacturers
can produce output in the format specified by record ‘16’; thus such output can be piped
directly into an application program using record ‘16’. Signal files in AHA format also
match these specifications. Piped records for reading or writing other numbers of signals
are provided in the ‘pipe’ subdirectory of the system-wide database directory; they are
named ‘pipe/8xn ’ and ‘pipe/16xn ’, where n is the number of signals (n = 1, 2, . . . , 16;
piped record header files can be created with larger numbers of signals (use the existing
files as a model).

Application programs may also read or write signal files in the current directory using
local record header files. Record ‘16l’ (“one-six-ell”) specifies up to sixteen format 16 files,
and record ‘8l’ (“eight-ell”) specifies up to sixteen format 8 files, named ‘data0’, ‘data1’,
‘data2’, . . . , ‘datan ’ in the current directory. When opened using isigopen or wfdbinit,
these signal files will be readable by getvec as signals 0, 1, 2, . . . 16 respectively. These
files should be created by the user, with the use of putvec. It is necessary to create only
as many signal files as will be used; if, for example, only one signal is needed, only ‘data0’
need be created.

5.9 NETFILES

If the symbol WFDB_NETFILES is defined at the time the WFDB library is compiled,
then input files located on remote web (HTTP) and FTP servers can be read directly. This
capability is implemented using the World Wide Web Consortium’s libwww library (which is
available on many of the platforms supported by the WFDB library). NETFILES support,
if available, is transparent to WFDB applications. To make use of this feature, simply link
to the NETFILES-enabled WFDB library (the necessary libwww functions will be loaded
automatically), and incorporate one or more URL prefixes in the WFDB path.

In current versions of the WFDB library, the default WFDB path (de-
fined in the WFDB library source file wfdblib.h, and used as the WFDB
path if the WFDB environment variable is undefined) is ‘. /usr/database
http://www.physionet.org/physiobank/database’. (The second component, after
the ‘.’ that specifies the current directory, may vary, depending on your platform
and the choices made during installation.) The third component is a URL prefix
pointing to PhysioBank, an on-line archive for a wide variety of standard databases of
physiologic signals. For example, the MIT-BIH Polysomnographic Database is kept in
http://www.physionet.org/physiobank/database/slpdb, so it is possible to read
record slp37 of that database directly from PhysioBank by passing slpdb/slp37 as the
record argument to wfdbinit (or isigopen, annopen, etc.).

Current implementations of libwww permit input from http:// URLs in much the same
way that local files are read, provided that the remote web server supports HTTP 1.1

http://www.physionet.org/physiobank/database/slpdb
http://

Chapter 5: Database Files 71

range requests (most, including PhysioNet’s, do). This means that it is not necessary to
download an entire file in order to examine part of it, and you may notice little or no speed
difference between local file and network file input for many applications. If the remote
server does not support range requests, however, or if input is from an ftp:// URL, the
current implementation downloads the entire file to memory, so you may notice a significant
startup delay if the file is long and your network connection is slow, or if the file does not
fit into physical memory.

Currently, NETFILES support is limited to input files; as always, any output files created
by the WFDB library are written into the current directory, unless the record name contains
local path information.

NETFILES support was introduced in WFDB library version 10.0.1.

5.10 Annotation Order

WFDB applications may generally assume (and most of them do assume) that all anno-
tations in any given annotation file are in canonical order. Successful use of iannsettime
requires that this assumption be correct. Early versions of the WFDB library (before ver-
sion 6.2) defined canonical order as time order. More recent versions of the WFDB library
define canonical order as time and chan order (thus annotations are arranged first in time
order, and any simultaneous annotations are arranged according to the value of their chan
fields, from smallest to largest).

The combination of the time and chan fields of an annotation defines a unique location in
a virtual array of annotations which an annotation file represents. No two annotations may
occupy the same location in this virtual array. This restriction was enforced by versions
of the WFDB library earlier than version 9.7. In these versions of the WFDB library,
putann required that annotations be written in canonical order, and refused to write any
out-of-order annotations supplied to it.

Current versions of the WFDB library do not impose this requirement. In version
9.7 and later versions, putann accepts and records out-of-order annotations and multiple
annotations that occupy the same location. If any such annotations have been written, the
completed annotation file is rewritten in canonical order by wfdbquit or oannclose. This
is accomplished by running ‘sortann’ (see the WFDB Applications Guide) as a separate
process using the ANSI C system function. If this function is not available, or if ‘sortann’
cannot be run, wfdbquit (or oannclose) emits a warning message describing how to post-
process the annotations to put them into canonical order.

Although it is possible using current versions of the WFDB library to write two or more
annotations to the same location, only the last annotation written to any given location is
retained in the canonically-ordered annotation file. Thus that an application that generates
an annotation file can change the anntyp, subtyp, num, or aux fields of a previously-written
annotation simply by writing another annotation to the same location (i.e, with the same
time and chan fields). As a special case, an application may delete a previously-written
annotation by writing a NOTQRS annotation to the same location. To move an annotation
to a different location (i.e., to change its time or chan fields), it is necessary to delete it
from the original location, and then to insert it at the desired location, using two separate
invocations of putann.

72 WFDB Programmer’s Guide

In unusual circumstances, an unsorted annotation file may be useful (for example, as an
aid for debugging the application that produced it; ‘rdann’ can be used to list all of the
annotations in such a file, in the order in which they were written). In some environments,
the use of the ANSI C system function may be a security problem, and you may wish
to avoid automatic sorting of annotations for this reason. Set the environment variable
WFDBANNSORT to 0 at run time, or define the symbol DEFWFDBANNSORT as 0 when compiling
the WFDB library, if you wish to suppress automatic annotation sorting by wfdbquit and
oannclose.

Chapter 6: Programming Examples 73

6 Programming Examples

The programs in this chapter are useful as models for a variety of applications that
use the WFDB library. The line numbers are for reference only; they are not part of the
programs. Any of these examples can be compiled (under Unix) using a command of the
form

cc file.c -lwfdb

or, if the WFDB library or its *.h files are not in the standard locations:
cc ‘wfdb-config --cflags‘ file.c ‘wfdb-config --libs‘

where file.c is the name of the file containing the source; see Chapter 1 [Using the WFDB
Library], page 13, for further information. The sources for these examples are included in
the WFDB Software Package, within the ‘examples’ directory.

Example 1: An Annotation Filter

The following program copies an annotation file, changing all QRS annotations to NORMAL
and deleting all non-QRS annotations.

1 #include <stdio.h>
2 #include <wfdb/wfdb.h>
3 #include <wfdb/ecgmap.h>
4

5 main()
6 {
7 WFDB_Anninfo an[2];
8 char record[8], iann[10], oann[10];
9 WFDB_Annotation annot;
10

11 printf("Type record name: ");
12 fgets(record, 8, stdin); record[strlen(record)-1] = ’\0’;
13 printf("Type input annotator name: ");
14 fgets(iann, 10, stdin); iann[strlen(iann)-1] = ’\0’;
15 printf("Type output annotator name: ");
16 fgets(oann, 10, stdin); oann[strlen(oann)-1] = ’\0’;
17 an[0].name = iann; an[0].stat = WFDB_READ;
18 an[1].name = oann; an[1].stat = WFDB_WRITE;
19 if (annopen(record, an, 2) < 0) exit(1);
20 while (getann(0, &annot) == 0)
21 if (isqrs(annot.anntyp)) {
22 annot.anntyp = NORMAL;
23 if (putann(0, &annot) < 0) break;
24 }
25 wfdbquit();
26 }

(See http://www.physionet.org/physiotools/wfdb/examples/example1.c for a copy of
this program.)

http://www.physionet.org/physiotools/wfdb/examples/example1.c

74 WFDB Programmer’s Guide

Notes:

Line 2: All programs that use the WFDB library must include ‘<wfdb/wfdb.h>’.

Line 3: The #include statement makes available not only the mapping macros, one
of which will be used in line 21, but also the annotation code symbols in
‘<wfdb/ecgcodes.h>’, one of which will be needed in line 22.

Line 7: Since there will be two annotators (one each for input and output), the array
of WFDB_Anninfo objects has two members.

Line 9: This structure will be filled in by getann, modified, and passed to putann for
output.

Lines 11–16:
The record name and the annotator names are filled into the character arrays.
The code in lines 12, 14, and 16 illustrates a C idiom for reading a string of
limited length; the second statement in each of these lines replaces the trailing
newline character (which fgets copies into the string) with a null. String
arguments to WFDB library functions should not include newline characters.

Lines 17–18:
Pointers to the character arrays (strings) containing the annotator names are
filled into the name fields of the array of WFDB_Anninfo objects. Note that the
name fields are only pointers and do not contain storage for the strings them-
selves. If this is not clear to you, review the discussion of pointers and arrays
in K&R, pp. 97–100. The input annotator is to be read, the output annotator
is to be written. WFDB_READ and WFDB_WRITE are defined in ‘<wfdb/wfdb.h>’.

Line 19: Note that the first and second arguments of annopen are the names of the
respective arrays; thus annopen receives pointers rather than values in its ar-
gument list.

Line 20: An annotation is read from annotator 0 into annot. The ‘&’ is necessary since
getann requires a pointer to the structure in order to be able to modify its
contents. When getann returns a negative value, no more annotations remain
to be read and the loop ends.

Line 21: The macro isqrs is defined in ‘<wfdb/ecgmap.h>’; isqrs(x) is true if x is an
annotation code that denotes a QRS complex, false if x is not a QRS annotation
code.

Line 22: NORMAL is defined in ‘<wfdb/ecgcodes.h>’.

Line 23: The call to putann now writes the modified annotation in the output annotator
0 file. As for getann, a pointer to annot must be passed using the ‘&’ operator.

Line 25: All files are closed prior to exiting. This is mandatory since the program creates
an output file with putann.

Example 2: An Annotation Translator

This program translates the ‘atr’ annotations for the record named in its argument into
an AHA-format annotation file with the annotator name ‘aha’.

Chapter 6: Programming Examples 75

1 #include <stdio.h>
2 #include <wfdb/wfdb.h>
3

4 main(argc, argv)
5 int argc;
6 char *argv[];
7 {
8 WFDB_Anninfo an[2];
9 WFDB_Annotation annot;
10

11 if (argc < 2) {
12 fprintf(stderr, "usage: %s record\n", argv[0]);
13 exit(1);
14 }
15 an[0].name = "atr"; an[0].stat = WFDB_READ;
16 an[1].name = "aha"; an[1].stat = WFDB_AHA_WRITE;
17 if (annopen(argv[1], an, 2) < 0) exit(2);
18 while (getann(0, &annot) == 0 && putann(0, &annot) == 0)
19 ;
20 wfdbquit();
21 exit(0);
22 }

(See http://www.physionet.org/physiotools/wfdb/examples/example2.c for a copy of
this program.)
Notes:

Lines 4–6:
If this doesn’t look familiar, see K&R, pp. 114–115.

Lines 11–14:
This is the standard idiom for producing those cryptic error messages for which
Unix programs are notorious; argv[0] is the name by which the program was
invoked.

Lines 15–16:
These lines set up the annotator information. Input annotator 0 is the ‘atr’
annotation file, and output annotator 0 will be written in AHA format.

Line 17: If we can’t read the input or write the output, quit with an error message from
annopen.

Line 18: Here’s where the work is done. The format translation is handled entirely by
getann and putann. The loop ends normally when getann reaches the end of
the input file, or prematurely if there is a read or write error.

Line 21: Since we have carefully defined non-zero exit codes for the various errors that
this program might encounter, we also define this successful exit here. If this
program is run as part of a Unix shell script, the exit codes are accessible to
the shell, which can determine what to do next as a result. If this line were
omitted (as in example 1), the exit code would be undefined.

http://www.physionet.org/physiotools/wfdb/examples/example2.c

76 WFDB Programmer’s Guide

Example 3: An Annotation Printer

This program prints annotations in readable form. Its first argument is an annotator
name, and its second argument is a record name.

1 #include <stdio.h>
2 #include <wfdb/wfdb.h>
3

4 main(argc, argv)
5 int argc;
6 char *argv[];
7 {
8 WFDB_Anninfo a;
9 WFDB_Annotation annot;
10

11 if (argc < 3) {
12 fprintf(stderr, "usage: %s annotator record\n", argv[0]);
13 exit(1);
14 }
15 a.name = argv[1]; a.stat = WFDB_READ;
16 (void)sampfreq(argv[2]);
17 if (annopen(argv[2], &a, 1) < 0) exit(2);
18 while (getann(0, &annot) == 0)
19 printf("%s (%ld) %s %d %d %d %s\n",
20 timstr(-(annot.time)),
21 annot.time,
22 annstr(annot.anntyp),
23 annot.subtyp, annot.chan, annot.num,
24 (annot.aux != NULL && *annot.aux > 0) ?
25 annot.aux+1 : "");
26 exit(0);
27 }

(See http://www.physionet.org/physiotools/wfdb/examples/example3.c for a copy of
this program.)

Notes:

Line 16: The invocation of sampfreq here sets the internal variables needed by timstr
below.

Line 20: This line gives the annotation time as a time of day. If the base time is omitted
in the header file, or if we used timstr(annot.time) instead, we would obtain
the elapsed time from the beginning of the record.

Lines 24–25:
This expression evaluates to an empty string unless the aux string is non-empty.
It makes the assumption that aux is a printable ASCII string; the printable part
follows the length byte.

http://www.physionet.org/physiotools/wfdb/examples/example3.c

Chapter 6: Programming Examples 77

Example 4: Generating an R-R Interval Histogram

This program reads an annotation file, determines the intervals between beat annotations
(assumed to be the R-R intervals), and accumulates a histogram of them.

1 #include <stdio.h>
2 #include <wfdb/wfdb.h>
3 #include <wfdb/ecgmap.h>
4

5 main(argc, argv)
6 int argc;
7 char *argv[];
8 {
9 int rr, *rrhist, rrmax;
10 long t;
11 WFDB_Anninfo a;
12 WFDB_Annotation annot;
13 void *calloc();
14

15 if (argc < 3) {
16 fprintf(stderr, "usage: %s annotator record\n", argv[0]);
17 exit(1);
18 }
19 a.name = argv[1]; a.stat = WFDB_READ;
20 if (annopen(argv[2], &a, 1) < 0) exit(2);
21 if ((rrmax = (int)(3*sampfreq(argv[2]))) <= 0) exit(3);
22 if ((rrhist = (int *)calloc(rrmax+1, sizeof(int))) == NULL) {
23 fprintf(stderr, "%s: insufficient memory\n", argv[0]);
24 exit(4);
25 }
26 while (getann(0, &annot) == 0 && !isqrs(annot.anntyp))
27 ;
28 t = annot.time;
29 while (getann(0, &annot) == 0)
30 if (isqrs(annot.anntyp)) {
31 if ((rr = annot.time - t) > rrmax) rr = rrmax;
32 rrhist[rr]++;
33 t = annot.time;
34 }
35 for (rr = 1; rr < rrmax; rr++)
36 printf("%4d %s\n", rrhist[rr], mstimstr((long)rr));
37 printf("%4d %s (or longer)\n", rrhist[rr], mstimstr((long)rr));
38 exit(0);
39 }

(See http://www.physionet.org/physiotools/wfdb/examples/example4.c for a copy of
this program.)
Notes:

http://www.physionet.org/physiotools/wfdb/examples/example4.c

78 WFDB Programmer’s Guide

Lines 21–25:
Here we allocate storage for the histogram. The value returned by sampfreq, if
positive, specifies the number of sample intervals per second; we will allocate 3
seconds’ worth of bins, initialized to zero. See K&R, page 167, for a description
of calloc.

Lines 26–28:
This code sets t to the time of the first annotated beat in the record.

Lines 29–34:
Here we read the remainder of the annotations, skipping any non-beat anno-
tations. The difference between the values of annot.time for consecutive beat
annotations defines an R-R interval (rr). Each possible value of rr up to rrmax
is assigned a bin in rrhist. Intervals longer than 3 seconds (rrmax) are counted
in the bin corresponding to rr = rrmax.

Lines 35–37:
The histogram is printed as a two-column table, with the number of intervals
in the first column and the length of the interval (with millisecond resolution)
in the second column. (What happens if rr starts at 0 rather than 1 in line
35?)

Example 5: Reading Signal Specifications

This program reads the signal specifications of the record named as its argument:
1 #include <stdio.h>
2 #include <wfdb/wfdb.h>
3

4 main(argc, argv)
5 int argc;
6 char *argv[];
7 {
8 WFDB_Siginfo *s;
9 int i, nsig;
10

11 if (argc < 2) {
12 fprintf(stderr, "usage: %s record\n", argv[0]);
13 exit(1);
14 }
15 nsig = isigopen(argv[1], NULL, 0);
16 if (nsig < 1) exit(2);
17 s = (WFDB_Siginfo *)malloc(nsig * sizeof(WFDB_Siginfo));
18 if (s == NULL) {
19 fprintf(stderr, "insufficient memory\n");
20 exit(3);
21 }
22 if (isigopen(argv[1], s, nsig) != nsig) exit(2);
23 printf("Record %s\n", argv[1]);

Chapter 6: Programming Examples 79

24 printf("Starting time: %s\n", timstr(0L));
25 printf("Sampling frequency: %g Hz\n", sampfreq(argv[1]));
26 printf("%d signals\n", nsig);
27 for (i = 0; i < nsig; i++) {
28 printf("Group %d, Signal %d:\n", s[i].group, i);
29 printf(" File: %s\n", s[i].fname);
30 printf(" Description: %s\n", s[i].desc);
31 printf(" Gain: ");
32 if (s[i].gain == 0.)
33 printf("uncalibrated; assume %g", WFDB_DEFGAIN);
34 else printf("%g", s[i].gain);
35 printf(" adu/%s\n", s[i].units ? s[i].units : "mV");
36 printf(" Initial value: %d\n", s[i].initval);
37 printf(" Storage format: %d\n", s[i].fmt);
38 printf(" I/O: ");
39 if (s[i].bsize == 0) printf("can be unbuffered\n");
40 else printf("%d-byte blocks\n", s[i].bsize);
41 printf(" ADC resolution: %d bits\n", s[i].adcres);
42 printf(" ADC zero: %d\n", s[i].adczero);
43 if (s[i].nsamp > 0L) {
44 printf(" Length: %s (%ld sample intervals)\n",
45 timstr(s[i].nsamp), s[i].nsamp);
46 printf(" Checksum: %d\n", s[i].cksum);
47 }
48 else printf(" Length undefined\n");
49 }
50 exit(0);
51 }

(See http://www.physionet.org/physiotools/wfdb/examples/example5.c for a copy of
this program.)
Notes:

Line 15: The command-line argument, argv[1], is the record name. The number of
signals listed in the header file for the record is returned by isigopen as nsig.
If nsig < 1, isigopen will print an error message; in this case the program
can’t do anything useful, so it exits.

Line 17: We allocate nsig signal information (WFDB_Siginfo) objects.

Line 22: On the second invocation of isigopen, we pass the pointer to the signal infor-
mation objects and the number of signals we expect to open. isigopen returns
the number of signals it is able to open; if any of those named in the header file
are unreadable, the return value will not match nsig, and the program exits.

Line 24: Invoking timstr with an argument of zero (here written ‘0L’ to emphasize to
the compiler that the argument is a long integer) will obtain the starting time
of the record. If no starting time is defined, timstr will return “0:00:00”.

Lines 31–34:
Notice how a zero value for gain is interpreted.

http://www.physionet.org/physiotools/wfdb/examples/example5.c

80 WFDB Programmer’s Guide

Line 35: If the units field is NULL, the physical units are assumed to be millivolts
(“mV”).

Lines 38–40:
If bsize is zero, I/O can be performed in blocks of any reasonable size; otherwise
it must be performed in blocks of exactly the specified bsize.

Lines 43–48:
If the length of the record is defined, it is printed in both hours, minutes, and
seconds, and in sample intervals. Since the argument of timstr in line 39 is
positive, it is interpreted as a time interval. The checksum is defined only if the
record length is defined.

Example 6: A Differentiator

The program below inverts and differentiates the signals read by getvec and writes the
results with putvec. The output is readable as record ‘dif’. A wide variety of simple
digital filters can be modelled on this example; see [Example 7], page 81, for a more general
approach.

1 #include <stdio.h>
2 #include <wfdb/wfdb.h>
3

4 main(argc, argv)
5 int argc;
6 char *argv[];
7 {
8 WFDB_Siginfo *s;
9 int i, nsig, nsamp=1000;
10 WFDB_Sample *vin, *vout;
11

12 if (argc < 2) {
13 fprintf(stderr, "usage: %s record\n", argv[0]); exit(1);
14 }
15 if ((nsig = isigopen(argv[1], NULL, 0)) <= 0) exit(2);
16 s = (WFDB_Siginfo *)malloc(nsig * sizeof(WFDB_Siginfo));
17 vin = (WFDB_Sample *)malloc(nsig * sizeof(WFDB_Sample));
18 vout = (WFDB_Sample *)malloc(nsig * sizeof(WFDB_Sample));
19 if (s == NULL || vin == NULL || vout == NULL) {
20 fprintf(stderr, "insufficient memory\n");
21 exit(3);
22 }
23 if (isigopen(argv[1], s, nsig) != nsig) exit(2);
24 if (osigopen("8l", s, nsig) <= 0) exit(3);
25 while (nsamp-- > 0 && getvec(vin) > 0) {
26 for (i = 0; i < nsig; i++)
27 vout[i] -= vin[i];
28 if (putvec(vout) < 0) break;

Chapter 6: Programming Examples 81

29 for (i = 0; i < nsig; i++)
30 vout[i] = vin[i];
31 }
32 (void)newheader("dif");
33 wfdbquit();
34 exit(0);
35 }

(See http://www.physionet.org/physiotools/wfdb/examples/example6.c for a copy of
this program.)
Notes:

Line 24: Here we attempt to open as many output signals as there are input signals; if
we cannot do so, the program exits after osigopen prints an error message.

Line 25: The main loop of the program begins here. If 1000 samples can be read from
each signal, the loop will end normally; if getvec fails before 1000 samples have
been read, the loop ends prematurely.

Lines 26–27:
For each signal, we compute the negated first difference by subtracting the new
sample from the previous sample.

Line 28: One sample of each output signal is written here.

Lines 29–30:
The new input samples are copied into the output sample vector in preparation
for the next iteration.

Line 32: This step is optional. It creates a header file for a new record to be called
‘dif’, which we can then open with another program if we want to read the
signals that this program has written. Since the record argument for osigopen
was ‘8l’, we can also read these files using record ‘8l’; one reason for making
a new ‘hea’ file here is that the ‘hea’ file for ‘8l’ may not necessarily indicate
the proper sampling frequency for these signals.

Line 33: Since the program writes output signals, it must invoke wfdbquit to close the
files properly.

Example 7: A General-Purpose FIR Filter

This program illustrates the use of sample to obtain random access to signals, a technique
that is particularly useful for implementing digital filters. The first argument is the record
name, the second and third arguments are the start time and the duration of the segment to
be filtered, and the rest of the arguments are finite-impulse-response (FIR) filter coefficients.
For example, if this program were compiled into an executable program called ‘filter’, it
might be used by

filter 100 5:0 20 .2 .2 .2 .2 .2

which would apply a five-point moving average (rectangular window) filter to 20 seconds of
record ‘100’, beginning 5 minutes into the record. The output of the program is readable
as record ‘out’, for which a header file is created in the current directory.

http://www.physionet.org/physiotools/wfdb/examples/example6.c

82 WFDB Programmer’s Guide

1 #include <stdio.h>
2 #include <wfdb/wfdb.h>
3

4 main(argc, argv)
5 int argc;
6 char *argv[];
7 {
8 double *c, one = 1.0, vv, atof();
9 int i, j, nc = argc - 4, nsig;
10 long nsamp, t;
11 static WFDB_Sample *v;
12 static WFDB_Siginfo *s;
13

14 if (argc < 4) {
15 fprintf(stderr,
16 "usage: %s record start duration [coefficients ...]\n",
17 argv[0]);
18 exit(1);
19 }
20 if (nc < 1) {
21 nc = 1; c = &one;
22 }
23 else if ((c = (double *)calloc(nc, sizeof(double))) == NULL) {
24 fprintf(stderr, "%s: too many coefficients\n", argv[0]);
25 exit(2);
26 }
27 for (i = 0; i < nc; i++)
28 c[i] = atof(argv[i+4]);
29 if ((nsig = isigopen(argv[1], NULL, 0)) < 1)
30 exit(3);
31 s = (WFDB_Siginfo *)malloc(nsig * sizeof(WFDB_Siginfo));
32 v = (WFDB_Sample *)malloc(nsig * sizeof(WFDB_Sample));
33 if (s == NULL || v == NULL) {
34 fprintf(stderr, "insufficient memory\n");
35 exit(3);
36 }
37 if (isigopen(argv[1], s, nsig) != nsig)
38 exit(3);
39 if (isigsettime(strtim(argv[2])) < 0)
40 exit(4);
41 if ((nsamp = strtim(argv[3])) < 1) {
42 fprintf(stderr, "%s: inappropriate value for duration\n",
43 argv[0]);
44 exit(5);
45 }
46 if (osigopen("16l", s, nsig) != nsig)
47 exit(6);

Chapter 6: Programming Examples 83

48

49 (void)sample(0, 0L);
50 for (t = 0; t < nsamp && sample_valid(); t++) {
51 for (j = 0; j < nsig; j++) {
52 for (i = 0, vv = 0.; i < nc; i++)
53 if (c[i] != 0.) vv += c[i]*sample(j, t+i);
54 v[j] = (int)vv;
55 }
56 if (putvec(v) < 0) break;
57 }
58

59 (void)newheader("out");
60 wfdbquit();
61 exit(0);
62 }

(See http://www.physionet.org/physiotools/wfdb/examples/example7.c for a copy of
this program.)

Notes:

Lines 20–22:
If no coefficients are provided on the command line, the program will simply
copy the selected segment of the input signals.

Lines 23–28:
If there are more coefficients than there are samples in the circular buffer, or if
memory cannot be allocated for the coefficient vector, the program cannot work
properly, so it exits with an error message. In lines 27 and 28, the ASCII strings
that represent the coefficients are converted to double format and stored in the
coefficient vector.

Lines 29–40:
The record name is argv[1], and the start time is argv[2]; if the record
can’t be opened, or the start time is inappropriate, the program exits. See the
previous example for details on how isigopen is used.

Lines 41–45:
The duration argument should be a time interval in HH:MM:SS format; strtim
converts it to the appropriate number of samples.

Lines 46–47:
The output signals will be written to files in the current directory according to
the specifications for record ‘16l’ (see Section 5.8 [Piped and Local Records],
page 70). If we can’t write as many output signals as there are input signals,
the program exits.

Line 49: Here, signal is invoked only for its side effect; assuming that any samples can
be read from the specified record, sample(0, 0L) returns a valid sample, so
that the value returned by sample_valid() is true (1).

http://www.physionet.org/physiotools/wfdb/examples/example7.c

84 WFDB Programmer’s Guide

Lines 50–57:
Here’s where the work is done. The outer loop is executed once per sample
vector, the middle loop once per signal, and the inner loop once per coefficient.
In line 53, we retrieve an input sample, multiply it by a filter coefficient, and
add it to a running sum. The sum (vv) is initialized to zero in line 52 before
we begin, and is converted to an int in line 54 when we are finished. Once an
entire sample vector has been filtered, it is written out in line 56. The entire
process is repeated up to nsamp times, or until we run out of input samples.

Line 59: The program creates a header file for record ‘out’, using the signal specifications
from record ‘16l’ and the sampling frequency from the input record.

Example 8: Creating a New Database Record

This program creates a new record from scratch. It asks the user for information about
the signals to be sampled, then records them, and finally creates a ‘hea’ file for the new
record. Details of data acquisition are hardware-dependent and are not shown here.

1 #include <stdio.h>
2 #include <wfdb/wfdb.h>
3

4 main()
5 {
6 char answer[32], record[8], directory[32];
7 int i, nsig = 0;
8 long nsamp, t;
9 double freq = 0.;
10 char **filename, **description, **units;
11 WFDB_Sample *v;
12 WFDB_Siginfo *s;
13

14 do {
15 printf("Choose a record name [up to 6 characters]: ");
16 fgets(record, 8, stdin); record[strlen(record)-1] = ’\0’;
17 } while (newheader(record) < 0);
18 do {
19 printf("Number of signals to be recorded [>0]: ");
20 fgets(answer, 32, stdin); sscanf(answer, "%d", &nsig);
21 } while (nsig < 1);
22 s = (WFDB_Siginfo *)malloc(nsig * sizeof(WFDB_Siginfo));
23 v = (WFDB_Sample *)malloc(nsig * sizeof(WFDB_Sample));
24 filename = (char **)malloc(nsig * sizeof(char *));
25 description = (char **)malloc(nsig * sizeof(char *));
26 units = (char **)malloc(nsig * sizeof(char *));
27 if (s == NULL || v == NULL || filename == NULL ||
28 description == NULL || units == NULL) {
29 fprintf(stderr, "insufficient memory\n");
30 exit(1);

Chapter 6: Programming Examples 85

31 }
32 for (i = 0; i < nsig; i++) {
33 if ((filename[i] = (char *)malloc(32)) == NULL ||
34 (description[i] = (char *)malloc(32)) == NULL ||
35 (units[i] = (char *)malloc(32)) == NULL) {
36 fprintf(stderr, "insufficient memory\n");
37 exit(1);
38 }
39 }
40 do {
41 printf("Sampling frequency [Hz per signal, > 0]: ");
42 fgets(answer, 32, stdin); sscanf(answer, "%lf", &freq);
43 } while (setsampfreq(freq) < 0);
44 do {
45 printf("Length of record (H:M:S): ");
46 fgets(answer, 32, stdin);
47 } while ((nsamp = strtim(answer)) < 1L);
48 printf("Directory for signal files [up to 30 characters]: ");
49 fgets(directory, 32, stdin);
50 directory[strlen(directory)-1] = ’\0’;
51 printf("Save signals in difference format? [y/n]: ");
52 fgets(answer, 32, stdin);
53 s[0].fmt = (answer[0] == ’y’) ? 8 : 16;
54 printf("Save all signals in one file? [y/n]: ");
55 fgets(answer, 32, stdin);
56 if (answer[0] == ’y’) {
57 sprintf(filename[0], "%s/d.%s", directory, record);
58 for (i = 0; i < nsig; i++) {
59 s[i].fname = filename[0];
60 s[i].group = 0;
61 }
62 }
63 else {
64 for (i = 0; i < nsig; i++) {
65 sprintf(filename[i], "%s/d%d.%s", directory,i,record);
66 s[i].fname = filename[i];
67 s[i].group = i;
68 }
69 }
70 for (i = 0; i < nsig; i++) {
71 s[i].fmt = s[0].fmt; s[i].bsize = 0;
72 printf("Signal %d description [up to 30 characters]: ", i);
73 fgets(description[i], 32, stdin);
74 description[i][strlen(description[i])-1] = ’\0’;
75 s[i].desc = description[i];
76 printf("Signal %d units [up to 20 characters]: ", i);
77 fgets(units[i], 22, stdin);

86 WFDB Programmer’s Guide

78 units[i][strlen(units[i])-1] = ’\0’;
79 s[i].units = (*units[i]) ? units[i] : "mV";
80 do {
81 printf(" Signal %d gain [adu/%s]: ", i, s[i].units);
82 fgets(answer, 32, stdin);
83 sscanf(answer, "%lf", &s[i].gain);
84 } while (s[i].gain < 0.);
85 do {
86 printf(" Signal %d ADC resolution in bits [8-16]: ",i);
87 fgets(answer, 32, stdin);
88 sscanf(answer, "%d", &s[i].adcres);
89 } while (s[i].adcres < 8 || s[i].adcres > 16);
90 printf(" Signal %d ADC zero level [adu]: ", i);
91 fgets(answer, 32, stdin);
92 sscanf(answer, "%d", &s[i].adczero);
93 }
94 if (osigfopen(s, nsig) < nsig) exit(1);
95 printf("To begin sampling, press RETURN; to specify a\n");
96 printf(" start time other than the current time, enter\n");
97 printf(" it in H:M:S format before pressing RETURN: ");
98 fgets(answer, 32, stdin); answer[strlen(answer)-1] = ’\0’;
99 setbasetime(answer);
100

101 adinit();
102

103 for (t = 0; t < nsamp; t++) {
104 for (i = 0; i < nsig; i++)
105 v[i] = adget(i);
106 if (putvec(v) < 0) break;
107 }
108

109 adquit();
110

111 (void)newheader(record);
112 wfdbquit();
113 exit(0);
114 }

(See http://www.physionet.org/physiotools/wfdb/examples/example8.c for a copy of
this program.)

Notes:

Lines 14–17:
This code uses newheader to determine if a legal record name was entered (since
we don’t want to digitize the signals and then find out that we can’t create the
header file). The header file created in line 17 will be overwritten in line 111.

http://www.physionet.org/physiotools/wfdb/examples/example8.c

Chapter 6: Programming Examples 87

Lines 57–62:
This code generates a file name and initializes the fname and group fields of
the array of WFDB_Siginfo objects so that all signals will be saved in one file.

Lines 63–69:
This code generates unique file names and groups for each signal.

Lines 70–93:
Here, information specific to individual signals is gathered.

Line 94: If the signal files can’t be created, this program can do nothing else useful, so
it quits with an error message from osigfopen.

Lines 95–99:
Just before sampling begins, we set the base time. Note that an empty string
argument for setbasetime gives us the current time read from the system clock.

Line 101: What goes here will be hardware dependent. Typically it is necessary to set
up a timer for the ADC, allocate DMA buffers, specify interrupt vectors, and
initiate the first conversion(s). This program might also be used to create a
database record from prerecorded data in a non-supported format; in this case,
we might simply open the file containing the prerecorded data here.

Lines 103–107:
Here is where the samples are acquired (using hardware-dependent code not
shown here) and recorded (using putvec). At high sampling frequencies, it is
critical to make this code as fast as possible. It could be made faster by judicious
use of register and pointer variables if necessary. In an extreme case the entire
loop, possibly including putvec itself, can be written in assembly language;
since it is only a small fraction of the entire program, doing so is within reason.

Line 109: This final piece of hardware-dependent code typically clears the ADC control
register, stops the timer, and frees any system resources such as DMA channels
or interrupts.

Line 111: All of the information needed to generate the header file has been stored in
WFDB library internal data structures by osigfopen and putvec; we call
newheader here (before wfdbquit) to create the new ‘hea’ file.

Line 112: It is still necessary to use wfdbquit to close the signal file(s), even after call-
ing newheader. (In fact, it would be possible, though not likely to be use-
ful, to record more samples and to generate another header file before calling
wfdbquit.)

Example 9: A Signal Averager

The following program is considerably more complex than the previous examples in this
chapter. It reads an annotation file (for which the annotator name is specified in its first
argument, and the record name in the second argument) and selects beats of a specified type
to be averaged. The program selects segments of the signals that are within 50 milliseconds
of the time of the specified beat annotations, subtracts a baseline estimate from each sample,
and calculates an average waveform (by default, the average normal QRS complex).

88 WFDB Programmer’s Guide

1 #include <stdio.h>
2 #include <wfdb/wfdb.h>
3 #include <wfdb/ecgmap.h>
4

5 main(argc, argv)
6 int argc;
7 char *argv[];
8 {
9 int btype, i, j, nbeats = 0, nsig, hwindow, window;
10 long stoptime = 0L, **sum;
11 WFDB_Anninfo a;
12 WFDB_Annotation annot;
13 WFDB_Sample *v, *vb;
14 WFDB_Siginfo *s;
15 void *calloc();
16

17 if (argc < 3) {
18 fprintf(stderr,
19 "usage: %s annotator record [beat-type from to]\n",
20 argv[0]);
21 exit(1);
22 }
23 a.name = argv[1]; a.stat = WFDB_READ;
24 if ((nsig = isigopen(argv[2], NULL, 0)) < 1) exit(2);
25 s = (WFDB_Siginfo *)malloc(nsig * sizeof(WFDB_Siginfo));
26 v = (WFDB_Sample *)malloc(nsig * sizeof(WFDB_Sample));
27 vb = (WFDB_Sample *)malloc(nsig * sizeof(WFDB_Sample));
28 sum = (long **)malloc(nsig * sizeof(long *));
29 if (s == NULL || v == NULL || vb == NULL || sum == NULL) {
30 fprintf(stderr, "%s: insufficient memory\n", argv[0]);
31 exit(2);
32 }
33 if (wfdbinit(argv[2], &a, 1, s, nsig) != nsig) exit(3);
34 hwindow = strtim(".05"); window = 2*hwindow + 1;
35 for (i = 0; i < nsig; i++)
36 if ((sum[i]=(long *)calloc(window,sizeof(long))) == NULL) {
37 fprintf(stderr, "%s: insufficient memory\n", argv[0]);
38 exit(2);
39 }
40 btype = (argc > 3) ? strann(argv[3]) : NORMAL;
41 if (argc > 4) iannsettime(strtim(argv[4]));
42 if (argc > 5) {
43 if ((stoptime = strtim(argv[5])) < 0L)
44 stoptime = -stoptime;
45 if (s[0].nsamp > 0L && stoptime > s[0].nsamp)
46 stoptime = s[0].nsamp;
47 }

Chapter 6: Programming Examples 89

48 else stoptime = s[0].nsamp;
49 if (stoptime > 0L) stoptime -= hwindow;
50 while (getann(0, &annot) == 0 && annot.time < hwindow)
51 ;
52 do {
53 if (annot.anntyp != btype) continue;
54 isigsettime(annot.time - hwindow - 1);
55 getvec(vb);
56 for (j = 0; j < window && getvec(v) > 0; j++)
57 for (i = 0; i < nsig; i++)
58 sum[i][j] += v[i] - vb[i];
59 nbeats++;
60 } while (getann(0, &annot) == 0 &&
61 (stoptime == 0L || annot.time < stoptime));
62 if (nbeats < 1) {
63 fprintf(stderr, "%s: no ‘%s’ beats found\n",
64 argv[0], annstr(btype));
65 exit(4);
66 }
67 printf("Average of %d ‘%s’ beats:\n", nbeats, annstr(btype));
68 for (j = 0; j < window; j++)
69 for (i = 0; i < nsig; i++)
70 printf("%g%c", (double)sum[i][j]/nbeats,
71 (i == nsig-1) ? ’\n’ : ’\t’);
72 exit(0);
73 }

(See http://www.physionet.org/physiotools/wfdb/examples/example9.c for a copy of
this program.)
Notes:

Line 34: The “half-window” is 50 milliseconds wide, and the “window” (the duration of
a segment to be entered into the average) is one sample more than twice that
amount (i.e., 50 milliseconds to either side of the fiducial point defined by the
annotation).

Lines 35–39:
Here we allocate memory for the sum vectors that will be used to store the
running totals. See K&R, page 167, for a description of calloc.

Line 40: If a third argument is present on the command line, it is taken as an annotation
code mnemonic for the desired beat type; otherwise, the program will average
NORMAL QRS complexes.

Line 41: If a fourth argument is present on the command line, it is taken as the start
time; we arrange for the first annotation to be read by getann to be the first
annotation that occurs after the chosen start time.

Lines 42–49:
This code similarly determines when the averaging should stop. Unless no stop
time was specified on the command line and the signal length is not defined

http://www.physionet.org/physiotools/wfdb/examples/example9.c

90 WFDB Programmer’s Guide

in the ‘hea’ file for the record, stoptime will have a positive value in line 49,
which makes a tiny adjustment so that if a beat annotation occurs within 50
milliseconds of the end of the averaging period, the beat will not be included
in the average.

Lines 50-51:
This code addresses the (admittedly unlikely) prospect that the first annota-
tion(s) might occur within the first 50 milliseconds of the record; any such
annotations will be excluded from the average.

Lines 52–61:
Here we read annotations (the first is already in annot when we enter the loop,
and subsequent annotations are read in line 60); select the desired ones (line
53); skip to the correct spot in the signals (line 54; the sample selected there is
the one just before the beginning of the window); read a sample from each signal
(line 55) into the vb vector, which will be used as a crude baseline estimate;
read window samples from each signal (line 56), subtracting the baseline from
each and adding the result into the running totals; update a beat counter (line
59); and check for loop termination conditions (line 61).

Lines 62–71:
This is the output section. If no beats of type btype were found, obviously
no average can be printed; note that the message goes to the standard error
output, so the user will notice it even if the standard output has been redirected
to a file. In the usual case, the averages are printed out as a table, with a
column allocated to each signal. Note the cast in line 70 (necessary to preserve
precision), and the trick used in line 71 to print a tab after each column but
the last in each line.

Example 10: A QRS Detector

This program reads a single ECG signal, attempts to detect QRS complexes, and records
their locations in an annotation file. The detector algorithm is based on a Pascal program
written by W.A.H. Engelse and C. Zeelenberg, “A single scan algorithm for QRS-detection
and feature extraction”, Computers in Cardiology 6:37-42 (1979).

1 #include <stdio.h>
2 #include <wfdb/wfdb.h>
3 #include <wfdb/ecgcodes.h>
4

5 #define abs(A) ((A) >= 0 ? (A) : -(A))
6

7 main(argc, argv)
8 int argc;
9 char *argv[];
10 {
11 int filter, time=0, slopecrit, sign, maxslope=0, nsig, nslope=0,
12 qtime, maxtime, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9,
13 ms160, ms200, s2, scmax, scmin = 0;

Chapter 6: Programming Examples 91

14 WFDB_Anninfo a;
15 WFDB_Annotation annot;
16 WFDB_Sample *v;
17 WFDB_Siginfo *s;
18

19 if (argc < 2) {
20 fprintf(stderr, "usage: %s record [threshold]\n", argv[0]);
21 exit(1);
22 }
23 a.name = "qrs"; a.stat = WFDB_WRITE;
24

25 if ((nsig = isigopen(argv[1], NULL, 0)) < 1) exit(2);
26 s = (WFDB_Siginfo *)malloc(nsig * sizeof(WFDB_Siginfo));
27 v = (WFDB_Sample *)malloc(nsig * sizeof(WFDB_Sample));
28 if (s == NULL || v == NULL) {
29 fprintf(stderr, "%s: insufficient memory\n", argv[0]);
30 exit(2);
31 }
32 if (wfdbinit(argv[1], &a, 1, s, nsig) != nsig) exit(2);
33 if (sampfreq((char *)NULL) < 240. ||
34 sampfreq((char *)NULL) > 260.)
35 setifreq(250.);
36 if (argc > 2) scmin = muvadu(0, atoi(argv[2]));
37 if (scmin < 1) scmin = muvadu(0, 1000);
38 slopecrit = scmax = 10 * scmin;
39 ms160 = strtim("0.16"); ms200 = strtim("0.2"); s2 = strtim("2");
40 annot.subtyp = annot.chan = annot.num = 0; annot.aux = NULL;
41 (void)getvec(v);
42 t9 = t8 = t7 = t6 = t5 = t4 = t3 = t2 = t1 = v[0];
43

44 do {
45 filter = (t0 = v[0]) + 4*t1 + 6*t2 + 4*t3 + t4
46 - t5 - 4*t6 - 6*t7 - 4*t8 - t9;
47 if (time % s2 == 0) {
48 if (nslope == 0) {
49 slopecrit -= slopecrit >> 4;
50 if (slopecrit < scmin) slopecrit = scmin;
51 }
52 else if (nslope >= 5) {
53 slopecrit += slopecrit >> 4;
54 if (slopecrit > scmax) slopecrit = scmax;
55 }
56 }
57 if (nslope == 0 && abs(filter) > slopecrit) {
58 nslope = 1; maxtime = ms160;
59 sign = (filter > 0) ? 1 : -1;
60 qtime = time;

92 WFDB Programmer’s Guide

61 }
62 if (nslope != 0) {
63 if (filter * sign < -slopecrit) {
64 sign = -sign;
65 maxtime = (++nslope > 4) ? ms200 : ms160;
66 }
67 else if (filter * sign > slopecrit &&
68 abs(filter) > maxslope)
69 maxslope = abs(filter);
70 if (maxtime-- < 0) {
71 if (2 <= nslope && nslope <= 4) {
72 slopecrit += ((maxslope>>2) - slopecrit) >> 3;
73 if (slopecrit < scmin) slopecrit = scmin;
74 else if (slopecrit > scmax) slopecrit = scmax;
75 annot.time = strtim("i") - (time - qtime) - 4;
76 annot.anntyp = NORMAL; (void)putann(0, &annot);
77 time = 0;
78 }
79 else if (nslope >= 5) {
80 annot.time = strtim("i") - (time - qtime) - 4;
81 annot.anntyp = ARFCT; (void)putann(0, &annot);
82 }
83 nslope = 0;
84 }
85 }
86 t9 = t8; t8 = t7; t7 = t6; t6 = t5; t5 = t4;
87 t4 = t3; t3 = t2; t2 = t1; t1 = t0; time++;
88 } while (getvec(v) > 0);
89

90 wfdbquit();
91 exit(0);
92 }

(See http://www.physionet.org/physiotools/wfdb/examples/example10.c for a copy
of this program.)

Notes:

Line 5: A macro that evaluates to the absolute value of its argument.

Lines 11–12:
The names of these variables match those in the original Pascal program.

Lines 33–35:
Most of this program is independent of sampling frequency, but the filter (lines
45–46) and the threshold are as specified by the authors of the original program
for human ECGs sampled at 250 Hz (e.g., the AHA DB). If the sampling
frequency of the input record is significantly different, we use setifreq to
specify that we want getvec to give us data resampled at 250 Hz.

http://www.physionet.org/physiotools/wfdb/examples/example10.c

Chapter 6: Programming Examples 93

Lines 36–38:
The threshold is actually a slope criterion (with units of amplitude/time); these
lines normalize the threshold with respect to the signal gain. The default value
is used unless the user supplies an acceptable alternative. The variables scmin
and scmax are lower and upper bounds for the adaptive threshold slopecrit.

Lines 41–42:
Here we read the first sample and copy it into the variables that will be used
to store the ten most recent samples.

Lines 45–46:
This FIR filter differentiates and low-pass filters the input signal.

Lines 47–56:
Here we adjust the threshold if more than two seconds have elapsed since a
QRS was detected. In line 49, slopecrit is set to 15/16 of its previous value
if no slopes have been found; in line 53, it is set to 17/16 of its previous value
if 5 or more slopes were found (suggesting the presence of noise).

Lines 57–61:
If the condition in line 48 is satisfied, we may have found the beginning of a
QRS complex. We record that a slope has been found, set the timer maxtime
to 160 msec, and save the sign of the slope and the current time relative to the
previous beat.

Lines 62–85:
This code is executed once we have found a slope. Each time the filter output
crosses the threshold, we record another slope and begin looking for a threshold
crossing of the opposite sign (lines 63–66), which must occur within a specified
time. We record the maximum absolute value of the filter in maxslope (lines 67–
69) for eventual use in updating the threshold (lines 72–74). Once a sufficient
interval has elapsed following the last threshold crossing (line 70), if there were
between 2 and 4 slopes, we have (apparently) found a QRS complex, and the
program records a NORMAL annotation (lines 75–76). If there were 5 or more
slopes, the program records an artifact annotation (lines 80–81). If only 1 slope
was found, it is assumed to represent a baseline shift and no output is produced.

Lines 86–88:
At the end of the loop, the samples are shifted through the tn variables and
another sample is read.

94 WFDB Programmer’s Guide

Exercises 95

Exercises

These exercises are based on the material in the previous chapters. Answers to some of
them are at the back of the book, but try to work through them first.

1. Type in the first program from the previous chapter, compile it, and run it. If you know
that you will need to read WFDB files from non-standard locations, remember to set
and export the environment variable WFDB (see Section 1.4 [WFDB path], page 16). It
is a good idea to include this step in your ‘.profile’, ‘.cshrc’, or ‘autoexec.bat’. As
input, try record ‘100s’, input annotator ‘atr’, and output annotator ‘normal’. The
program should finish in five seconds or less. The annotations will have been written
into a file called ‘100s.nor’ in the current directory. Now type “rdann -r 100s -a
atr” and observe the output for a few seconds, then try “rdann -r 100s -a nor” and
notice the difference.

2. Modify the program from the previous exercise so that the non-QRS annotations are
put into a second output annotation file. Remember that you will need three annotation
files in all (one input and two output).

3. The next five short exercises are to be worked out on paper, although you may wish
to check your work on the computer. All of them assume that we are given a signal
sampled at 100 Hz with the following specifications:

fname = "signal.dat"
desc = "BP"
units = "mmHg"
gain = 10
initval = 80
group = 0
fmt = 212
spf = 1
bsize = 0
adcres = 12
adczero = 0
baseline = -300
nsamp = 1000000
cksum = 3109

For starters, convert a sample value of 280 into physical units.
4. Convert 120 mmHg into adus.
5. What are the maximum and minimum possible sample values in adu? in mmHg?
6. How large is ‘signal.dat’, in bytes? How much space could we save if we con-

verted it to format 8 (eight-bit first-differences)? What is the maximum slew rate
(in mmHg/second) that we can represent in that format?

7. Oops! We have just discovered that the maximum slew rate in our signal is 1500
mmHg/sec. Is there any way to store it at full precision in one of the supported
formats, that saves space compared to its present format?

8. Figure out how to plot or display the first 1000 points from signal 0 of a record in
amplitude vs. time format. You may wish to begin with the example program from

96 WFDB Programmer’s Guide

the first chapter. Arrange for the record name to be read from the command line (see
K&R, pp. 114–115, if you don’t know how to do this).

9. Try plotting VCGs by modifying the program from the previous exercise to plot pairs
of samples from each of two signals rather than sample number/value pairs.

10. Modify the program from the previous exercise, or Example 2 from the previous chapter,
so that you can specify a segment of the record to be processed with start and end
times. For example, the command

your-program record 10:0 10:10

should skip the first ten minutes, then process the next ten seconds of signals from
record.

11. Wesley Q. Phortran, IV, wrote this program to print beat times (in minutes and sec-
onds) and R-R intervals for the reference annotation file of record ‘100’. Why doesn’t
it work?

1 #include <wfdb/wfdb.h>
2

3 main()
4 {
5 WFDB_Annotation *annot;
6 WFDB_Anninfo ai;
7 int t;
8

9 ai.name = "atr";
10 ai.stat = WFDB_READ;
11 if (annopen(100, ai, 1)) {
12 while (getann(1, annot)) {
13 printf("%s\t(%d)\t%s\n", timstr(annot.time),
14 annot.time, mstimstr(annot.time - t));
15 t = annot.time;
16 }
17 }
18 }

Extra credit: Without actually trying it out, what does it produce on the standard
output?

12. Using isigsettime on a format 8 signal introduces a random offset into the signal, since
the contents of a format 8 signal file are first differences rather than amplitudes. For an
AC-coupled signal such as an ECG, this is usually inconsequential, but a DC-coupled
signal such as a blood pressure signal is usually useful only if absolute levels are known.
If we store such a signal in format 8, we must read it sequentially from the beginning in
order to get correct sample values. If we intend to do a lot of non-sequential processing
of such a signal, it may be worthwhile to build a table containing the correct sample
values at periodic intervals; then we can use isigsettime to skip to a sample in the
table, and read forward sequentially from that point. Write a program to build such
a table, and wrappers for isigsettime and getvec to give random access to format
8 signal files without introducing offset errors. On your system, how many sample

Exercises 97

intervals should be allowed between table entries in order to obtain an isigsettime
equivalent that executes in an average of 100 msec or less?

13. This exercise assumes that you have access to the MIT-BIH Arrhythmia Database,
either on a CD-ROM or via PhysioNet. Since the 360 Hz sampling frequency used in
that database is an integer multiple of 60 Hz, it is quite easy to design a 60 Hz notch
filter that can be applied to the database. Write a program that filters two input signals
and writes out the filtered data using putvec (see [Example 7], page 81, for a model
program). Try it out on MIT-BIH record ‘122’ (or use record ‘mitdb/x_mitdb/x_122’
from PhysioNet). Use your programs from the previous exercises to display your output.

14. If you used Example 7 as a model in the previous exercise, you may have noticed that
it is quite slow. Make it faster by arranging for sample to return a pointer to a vector
of samples from all signals (thereby reducing the number of function calls). Speed it
up further by defining a macro that calls the function only if the proper sample vector
is not already in the circular buffer; otherwise the macro should evaluate to a pointer
to the correct sample vector.

15. Prof. Nottin Ventedhier says, “Real programmers don’t use inefficient library I/O
routines — they write their own, in assembly language.” Implement a version of the
QRS detector in Example 10 without using the WFDB library. (To keep it simple,
assume that only one input format — of your choice — needs to be supported.) How
much faster than the original is your version?

16. (Non-trivial) Write a QRS detector that is independent of sampling frequency. Some
useful constants (for adult human ECGs): average normal QRS duration = 80 millisec-
onds, average QRS amplitude = 1 millivolt, average R-R interval = 1 second; assume
that upper and lower limits for these quantities are within a factor of 3 of the aver-
age values. Run your detector on MIT-BIH Arrhythmia Database record ‘200’. (This
record is available on PhysioNet. If you have a NETFILES-enabled WFDB library,
use the default WFDB path, and open record ‘mitdb/200’; otherwise, download the
record from http://www.physionet.org/physiobank/database/mitdb/.) Read the
documentation on the annotation comparator, ‘bxb’, and figure out how to use it to
compare the annotation file produced by your program against the reference annotator
‘atr’. How does your detector compare to Example 10?

17. If the previous exercise was too easy, modify your detector so that the annotations it
generates match those in the ‘atr’ file. Copying the ‘atr’ file is not permitted. You
may find this rather difficult. Good luck!

http://www.physionet.org/physiobank/database/mitdb/

98 WFDB Programmer’s Guide

Appendix A: Glossary 99

Appendix A Glossary

AC-coupled signal
A signal, such as an ECG, for which only variations in level, rather than ab-
solute levels, are significant. Such signals are usually passed through high-pass
filters before they are digitized, in order to remove any DC component (baseline
offset), so that the gain can be chosen optimally for the range of variation in
the signal.

ADC Analog-to-digital converter.

ADC resolution
The number of significant bits per sample. Typical ADCs yield between 8 and
16 bits of resolution.

ADC zero The value produced by the ADC given a 0 volt input. For bipolar ADCs, this
value is usually 0, but for the unipolar (offset binary) converter used for the
MIT DB, the ADC zero was 1024.

adu The unit of amplitude for samples.

AHA DB The American Heart Association Database for the Evaluation of Ventricular
Arrhythmia Detectors, consisting of 80 records identified by four-digit record
names.

AHA format
The format used for interchange of AHA DB and MIT DB records on 9-track
tape between institutions, not used for on-line files because it is relatively waste-
ful of storage space compared to MIT format (q.v.).

Annotation
A label, associated with a particular sample, which describes a feature of the
signal at that time. Most annotations are QRS annotations and indicate the
QRS type (normal, PVC, SVPB, etc.). Annotations are written by putann and
read by getann.

Annotation code
An integer in the range of 1 to ACMAX (defined in ‘<wfdb/ecgcodes.h>’) inclu-
sive, which denotes an event type.

Annotation file
A set of annotations in time order.

Annotator name
A name associated with an annotation file. The annotation file name is con-
structed from the record name by appending a ‘.’ and the annotator name. On
CD-ROMs and MS-DOS file systems, the annotator name is restricted to three
characters.

Annotator [number]
An integer by which an annotation file, once opened, is known. Input annotators
and output annotators each have their own series of annotator numbers assigned
in serial order beginning with 0.

100 WFDB Programmer’s Guide

Application program
In this guide, a program that uses the WFDB library to do something.

‘atr’ The annotator name for the reference annotation files (originally, ‘atruth’, i.e.,
the "truth" annotations).

Base counter value
The counter value (q.v.) that corresponds to sample 0. The base counter value
is read by getbasecount, and set by setbasecount (or by any of the functions
that read header files). If not defined explicitly, the base counter value is taken
to be 0.

Base time The time of day that corresponds to sample 0 in a given record. For MIT,
AHA, and ESC DB records, the base time was not recorded and is taken to be
0:0:0 (midnight).

Baseline [amplitude]
The sample value that corresponds to the baseline (isoelectric level or physical
zero level) in the signal. This quantity may drift during the record for a variety
of reasons, in which case the baseline field of the WFDB_Siginfo object that
describes the signal is only an approximation. The baseline is not the same as
the ADC zero (q.v.), which is a fixed characteristic of the digitizer.

Calibration file
A file containing data used to build a calibration list (q.v.).

Calibration list
A memory-resident linked list of WFDB_Calinfo objects (see Section 3.2 [Cal-
ibration Information Structures], page 58). Each such structure specifies the
size and type of the calibration pulse, and the customary plotting scale, for a
particular type of signal.

CD-ROM A read-only medium used for distribution of the MIT-BIH and ESC databases,
among others. CD-ROMs are physically identical in appearance to audio com-
pact disks.

Closing [a record]
The process of completing I/O associated with a record.

Counter frequency
The difference between counter values (q.v.) that are separated by an interval
of one second. The counter frequency is constant throughout any given record.
It may be undefined, in which case it is treated as equivalent to the sampling
frequency (q.v.) by the WFDB library. The counter frequency is read by
getcfreq, and set by setcfreq (or by any of the functions that read header
files).

Counter value
A number that serves as a time reference, in a record for which a counter
frequency is defined. A counter value may be converted to the time in seconds
from the beginning of the record by subtracting the base counter value (q.v.)
and dividing the remainder by the counter frequency. The units of ‘c’-prefixed
strtim arguments are counter values.

Appendix A: Glossary 101

Database files
Those files (annotation files, header files, signal files, and calibration files) that
are accessed via the WFDB library.

Database path
The names of the directories in which header, annotation, and calibration files
are kept. (Signal files may be located in these directories or elsewhere; header
files specify their locations.) To modify the database path, the environment
variable WFDB must be set by the user and exported accordingly.

DC-coupled signal
A signal, such as a blood pressure signal, for which absolute levels are significant.
Such signals must be digitized without being passed through high-pass filters,
in order to preserve absolute levels.

ESC DB The European ST-T Database, consisting of 90 records identified by ‘e’-prefixed
four-digit record names.

Frame A set of samples, containing all samples that occur within a given frame interval.
For an ordinary record, a frame contains exactly one sample of each signal; for
a multi-frequency record, a frame contains at least one sample of each signal,
and more than one sample of each oversampled signal (q.v.).

Frame interval
A time interval during which at least one sample exists for each signal. For an
ordinary record, the frame interval and the sampling interval are identical. For
a multi-frequency record, the frame interval is chosen to be an integer multiple
of each sampling frequency used.

Frame rate
The basic sampling frequency defined for a multi-frequency record; the recip-
rocal of the frame interval. The frame rate is usually the lowest sampling
frequency used for any signal included in the record.

Gain In this context, the number of adus (q.v.) per physical unit, referred to the
original analog signal. Gain in this sense is directly proportional to the degree
of amplification (the usual meaning of the word) of the analog signal prior to
digitization. Gain may vary between signals in a record.

‘hea’ The suffix (extension) that designates a header file (originally ‘header’).

header file A file accessible via the WFDB library that describes the signal files associated
with a given database record. A header file has a name of the form ‘record.hea’,
where record is the record name (q.v.).

High-resolution mode
An alternative mode for reading a multi-frequency record using getvec, that
can be selected using setgvmode. In high-resolution mode, getvec replicates
samples of signals digitized at less than the maximum sampling frequency, so
that each sample of any oversampled signals appear in at least one sample
vector.

102 WFDB Programmer’s Guide

Info string
Free text within a header file. Info strings can be read using getinfo and
written using putinfo.

Local record
A record for which the signal files reside in the current directory, typically used
for user-created signals. Records ‘8l’ and ‘16l’ are local records.

Location [of an annotation]
Every annotation has both time and chan attributes that define its location
within a virtual array of annotations. See Canonical order of annotations.

Canonical order of annotations
Normally, annotations are arranged in time order within an annotation file. An-
notations that have identical time attributes are arranged in chan order. An-
notations that have identical locations (i.e., identical time and chan attributes)
should not normally occur in a single annotation file; if this does happen, the
last annotation at any given location is treated as a replacement of any previous
annotations at that location.

Low-resolution mode
The default mode for reading a multi-frequency record using getvec. In low-
resolution mode, getvec returns one sample per signal per frame, by decimating
any oversampled signals to the frame rate.

MIT DB The Massachusetts Institute of Technology–Beth Israel Hospital Arrhythmia
Database, consisting of 48 records identified by three-digit record names.

MIT format
The standard format for storage of WFDB records on CD-ROMs, used on the
MIT, ESC, and MGH DB CD-ROMs, among others, and on PhysioNet.

Modification label
An “invisible” annotation at the beginning of an annotation file. A modification
label defines an annotation mnemonic and a corresponding description. When
annopen (or wfdbinit) opens an annotation file that contains modification la-
bels, it automatically calls setannstr and setanndesc to add the mnemonics
and descriptions to the translation tables used by annstr, strann, and anndesc.
When annopen (or wfdbinit) creates an annotation file, it automatically gen-
erates modification labels, for each annotation code that has been (re)defined
using setannstr or setanndesc. For this reason, you should normally make all
of your calls to setannstr and setanndesc before calling annopen or wfdbinit.
(An exception is if you are simply translating mnemonics and descriptions into
another language, rather than redefining them.) Version 5.3 and later versions
of the WFDB library support reading and writing modification labels; earlier
versions read modification labels as NOTE annotations.

Multi-frequency record
A record containing signals sampled at two or more sampling frequencies. Ver-
sion 9.0 and later versions of the WFDB library support reading and writing
multi-frequency records.

Appendix A: Glossary 103

Multi-segment record
A composite record that is the concatenation of two or more ordinary (single-
segment) records. Multi-segment records do not have their own signal files
(the signal files of their constituent segments are read when it is necessary to
read signals of multi-segment records), but they have their own header files
(created using setmsheader), and may have their own annotation files as well
(annotation files for the constituent segments of a multi-segment record are not
concatenated automatically when the record is read). The WFDB Software
Package includes wfdbcollate, an application that can create multi-segment
records from sets of single-segment records. Version 9.1 and later versions of
the WFDB library support reading and writing multi-segment records.

Multiplexed signal file
A set of vectors in time order, each consisting of two or more integer samples,
thus representing an equal number of signals.

NETFILES
WFDB files made available by an FTP or HTTP (web) server; readable by
applications linked with a NETFILES-enabled WFDB library. A NETFILES-
enabled WFDB library can be created by compiling the WFDB library sources
with the symbol WFDB_NETFILES defined (to anything; its value is not impor-
tant, only that it is defined) and then linking them with the libwww library avail-
able from the World Wide Web Consortium (http://www.w3.org/Library/).

9-track tape
A medium used for archival storage of WFDB records, which was once nearly
universally available on minicomputers and larger systems. The important
parameters are tape density (typically 800 or 1600 bpi) and block size (typically
some multiple of 512 bytes). Higher tape density and larger block size permit
more data to be stored on a tape.

Opening [a database record or a file]
The process of making a database record or a file accessible, if necessary by
creating it.

Oversampled signal
In a multi-frequency record, any signal recorded at a sampling frequency greater
than the frame rate (q.v.).

Physical unit
The natural unit of measurement of the original analog signal (e.g., millivolts,
liters per second, degrees). To convert samples into physical units, subtract the
ADC zero and divide the remainder by the gain.

Physical zero
The level (in physical units) that corresponds to the baseline (in adu), normally
zero physical units. For example, physical zero for a pressure signal with units
of mmHg is 0 mmHg.

PhysioNet The home of the WFDB library, and a source for recorded physiologic signals
and software for use with them. All materials on PhysioNet are freely available.

http://www.w3.org/Library/

104 WFDB Programmer’s Guide

The main PhysioNet server is http://www.physionet.org/, located at MIT
in Cambridge, Massachusetts; PhysioNet mirror sites are located around the
world (see http://www.physionet.org/mirrors/ for a list).

Piped record
A database record for which a signal file is designated as ‘-’, signifying that
it is to be read from the standard input or written to the standard output.
Records ‘8’ and ‘16’ are piped records, as are those defined within the ‘pipe’
subdirectory of the system-wide database directory (q.v.)

Prolog Extraneous bytes at the beginning of a signal file that are not to be read as
samples. Signal files created using the WFDB library do not contain prologs,
but signal files created using other means may contain prologs. To read such
a signal file using the WFDB library, provided that the sample data are in a
supported format, it is sufficient to record the length of the prolog (in bytes) in
the appropriate locations in a header file that names the signal file. If you need
to create such a header file, refer to the description of the byte offset field in
header(5) (the specification of the header file format in the WFDB Applications
Guide) or see [wfdbsetstart], page 53.

Record An extensible set of files that may include signal files, annotation files, and a
header file, all of which are associated with the same original signals. Only
the header file is mandatory. Although records are sometimes called tapes for
historical reasons, records are now more commonly maintained on CD-ROMs
or magnetic disks than on tape.

Record name
A character string that identifies a database record. Record names of MIT DB
records are 3-digit numerals, those of AHA DB records are 4-digit numerals,
and those of ESC DB records are 4-digit numerals with a prefixed ‘e’. Record
names may contain up to WFDB_MAXRNL (defined in ‘<wfdb/wfdb.h>’) charac-
ters, including any combination of letters, digits, and underscores. Case (the
difference between ‘e’ and ‘E’, for example) is significant in record names, even
under operating systems such as MS-DOS that do not treat case as significant
in file names.

Reference annotation file
An annotation file supplied by the creator of a record to document its contents
as accurately and thoroughly as possible. The annotator name ‘atr’ is reserved
for reference annotation files.

Sample An integer (of at least 16 bits) that corresponds to a voltage measured at a
given instant by an analog-to-digital converter. Samples are written by putvec
and read by getvec.

Sample interval
The unit of time; the interval between consecutive samples of a given signal.

Sample number
An attribute of a sample defined as the number of samples of the same signal
that precede it; thus the first sample of any signal has sample number 0. Sample

http://www.physionet.org/
http://www.physionet.org/mirrors/

Appendix A: Glossary 105

numbers are long integers (32 bits). Samples that have the same sample number
in different signals of a given record may be treated as having been observed
simultaneously.

Sampling frequency
The number of samples of a given signal that represent one second of the original
analog signal. The sampling frequency is constant throughout a signal file, and
is the same for all signals in a given record.

Signal A continuously varying function of time that is approximated by discrete sam-
ples.

Signal file A set of samples in time order, which represent a signal or signal group. Signal
files usually have names of the form record.dat, but this is only a convention
and is not required.

Signal group
A set of signals that are multiplexed together and stored in the same file. It
is possible to reset input pointers for all signals in a given signal group (see
[isgsettime], page 34), but not independently for individual signals within a
signal group.

Signal group number
A number by which a signal file, once opened, is known.

Signal number
An integer by which a signal, once opened, is known. Input and output signals
each have their own series of signal numbers assigned in serial order beginning
with 0.

Skew The time difference between samples having the same sample number but be-
longing to different signals. Ideally the skew is zero (or less than one sample
interval), but in some cases this is not so. For example, if the signals were orig-
inally recorded on multitrack analog tape, very small differences in the azimuth
of the recording and playback heads may result in measurable skew among sig-
nals. If the skew can be measured (for example, by reference to features of two
signals with a known time difference), it can be recorded in the header file for
a record; once this has been done, getvec and getframe correct for skew au-
tomatically. If you need to correct for skew, see skewedit(1) and header(5) (in
the WFDB Applications Guide), or see [wfdbsetskew], page 53. Prospectively,
if you anticipate that skew may be a problem, it is a good idea to apply an
easily identifiable synchronization pulse to all your inputs simultaneously while
recording; you can then locate this pulse in each digitized signal and use these
measurements to correct for skew.

Standard time format
Any string format legal as an argument for strtim (see [timstr and strtim],
page 38).

System-wide database directory
The directory that contains local copies of the default WFDB calibration file,
WFDB sample record 100s, and local, piped, and tape header files. This direc-
tory is created when the WFDB Software Package is installed, and by default it

106 WFDB Programmer’s Guide

is included in the WFDB path (as the second component, following the user’s
current directory). It is called the “system-wide” database directory because it
is shared by all users of the system on which it resides. Under Unix, the system-
wide database directory is usually ‘/usr/database’ or ‘/usr/local/database’;
under MS-DOS or MS-Windows, it is usually ‘c:\database’.

Tape A database record.

Time In this guide, synonymous with sample number (q.v.). Thus the “time of an an-
notation” is the sample number of the sample to which the annotation “points”.

WFDB library
A set of functions (subroutines), able to read and write database files, callable
by C and C++ programs, and described in this guide.

WFDB path
The database path (q.v.).

Appendix B: Installing the WFDB Software Package 107

Appendix B Installing the WFDB Software
Package

This appendix briefly describes how to install the WFDB Software Package on a new
system. The package includes C-language sources for the WFDB library and for a variety of
applications (see Appendix C [WFDB Applications], page 111), TEX source for this manual,
troff source for Unix man pages for the package, and a one-minute sample record (‘100s’).

How to obtain the WFDB Software Package

The latest version of the WFDB Software Package can always be downloaded in source
form from PhysioNet (http://www.physionet.org/physiotools/wfdb.shtml) and its
mirrors; binaries for popular operating systems and development snapshots, as well as
quick-start guides including installation notes for popular operating systems, are also
usually available there.

Unix, GNU/Linux, and similar operating systems

Before beginning the installation of the WFDB Software Package, obtain
and install the libwww package from http://www.w3.org/Library/ or from
http://www.physionet.org/physiotools/libwww/. This package is provided with most
current versions of GNU/Linux. (If you have a program called libwww-config, then
libwww is installed already.) You may omit this step if you do not wish to have NETFILES
support.

If you wish to use WAVE, also download and install the XView software from
http://www.physionet.org/physiotools/xview/. Sources are available, as are binaries
for several versions of GNU/Linux. If you are using SunOS or Solaris, XView binaries are
available in the Open Look Software Development package and may be installed already.
(If you have a program called textedit, then XView is installed already.) If you are
able to use an existing set of binaries, these are recommended, since the sources may
take a long time to compile. Be sure that the directory containing textedit, usually
/usr/openwin/bin, is in your PATH. You may omit this step if you do not wish to use
WAVE.

If you have downloaded the software from PhysioNet or another source, you will have a
gzip-compressed tar archive. Unpack it using the commands:

gzip -d wfdb.tar.gz
tar xfv wfdb.tar

(If you have GNU tar, as on GNU/Linux, you can combine these into a single command:
‘tar xfvz wfdb.tar.gz’.)

This will create a directory with a name of the form wfdb-m.n.r, where m.n.r is the
version number of the included WFDB library (e.g., 10.2.6). Enter this directory.

You should now be ready to configure, compile, and install the software, using the
commands:

./configure
make install

http://www.physionet.org/physiotools/wfdb.shtml
http://www.w3.org/Library/
http://www.physionet.org/physiotools/libwww/
http://www.physionet.org/physiotools/xview/

108 WFDB Programmer’s Guide

The ./configure command asks where you wish to install the package. If you accept
the default (/usr), you will need root permissions when runnning make install. If you
choose another location, follow the instructions given by configure for setting your PATH
and LD_LIBRARY_PATH environment variables.

Depending on the speed of your system and of your C compiler, ‘make’ will generally
require between 1 and 10 minutes.

Mac OS X (Darwin)

The WFDB Software Package, including WAVE, has been successfully compiled under
Mac OS X 10.2 (Darwin 6.0.1) and 10.3. It should also work under 10.1, but this has not
been tested.

Before compiling the WFDB Software Package, download and install:
• Mac OS X Developer Tools (from http://developer.apple.com/tools/xcode/)
• libwww (from Fink, http://fink.sourceforge.net/)
• an X11 package (from Fink, http://fink.sourceforge.net/; XDarwin,

http://www.xdarwin.org/; or Apple, http://www.apple.com/macosx/features/x11/download/)
• XView (from PhysioNet, http://www.physionet.org/physiotools/xview/)

Now follow the instructions in the previous section for installing from sources under Unix
or GNU/Linux.

MS-Windows

The WFDB Software Package, except for WAVE, has been successfully compiled under
all modern versions of MS-Windows (including MS-Windows 95, 98, ME, NT, 2000, and
XP) using the Cygwin development environment.

If you have not already done so, install the Cygwin development environment (freely
available from http://www.cygwin.com). This includes gcc (the GNU C/C++ compiler) as
well as a comprehensive assortment of other Unix utilities ported to MS-Windows. Accept
the defaults suggested by the installer, but be sure to select and install the gcc, binutils,
and make packages from the Devel category (these are not installed by default in a minimal
Cygwin installation).

Important: Although you may be able to compile the WFDB software package using
a proprietary compiler, this is not supported. The Makefile.dos files in several of the
subdirectories of the package’s source tree can be used with the make utilities provided with
most commercial C compilers, although you will need to customize them for your compiler.
Your feedback is appreciated.

Before beginning the installation of the WFDB Software Package, obtain
and install the libwww package from http://www.w3.org/Library/ or from
http://www.physionet.org/physiotools/libwww/. You may omit this step if you do
not wish to have NETFILES support.

Open a Cygwin terminal window (the Cygwin installer will have added this to your MS-
Windows start menu). Perform the remaining steps by typing the commands given below
into the terminal window.

http://developer.apple.com/tools/xcode/
http://fink.sourceforge.net/
http://fink.sourceforge.net/
http://www.xdarwin.org/
http://www.apple.com/macosx/features/x11/download/
http://www.physionet.org/physiotools/xview/
http://www.cygwin.com
http://www.w3.org/Library/
http://www.physionet.org/physiotools/libwww/

Appendix B: Installing the WFDB Software Package 109

Check that gcc is accessible by typing the command:
which gcc

The output of this command should be:
/usr/bin/gcc

If you don’t see this output, repeat the steps above as necessary to correct the problem
before continuing.

Unpack the gzip-compressed tar archive you downloaded earlier, using the tar com-
mand included with the Cygwin package:

tar xfvz wfdb.tar.gz

If your browser decompressed the file during the download, use this command instead:
tar xfv wfdb.tar

This will create a directory with a name of the form wfdb-m.n.r, where m.n.r is the
version number of the included WFDB library (e.g., 10.2.6). Enter this directory.

You should now be ready to configure, compile, and install the software, using the
commands:

./configure
make install

If you have Microsoft or Turbo C or C++, and a Microstar Laboratories DAP 1200-
or 2400-series analog interface board, you can compile ‘sample’ (a program for creating
database records from analog signals, and for replaying them in analog form). To do so
successfully, you must first have installed the Microstar ‘#include’ files and DAP interface
library on your system. Specifically, files ‘c_lib.c’, ‘clock.h’, and ‘ioutil.h’ must be
installed in your ‘include’ directory, and the version of the file ‘cdapl.lib’ that is com-
patible with your compiler must be installed in a directory in which libraries are found by
your linker. Read and customize lib/Makefile.dos and app/Makefile.dos as appropri-
ate for your compiler, and use your compiler’s make utility to generate wfdb.lib and then
sample.exe.

Other systems

Copy the contents of http://www.physionet/physiotools/wfdb/ to your hard disk.
Note that the text files are in Unix format (i.e., lines are terminated by ASCII line-feed
characters only). If your system expects text files in MS-DOS format (with both a carriage
return and a line-feed at the end of each line; VMS is one such system), use ‘u2d.exe’
(available from PhysioNet) to reformat the text files under MS-DOS. If your system is
a Macintosh (which expects that lines are terminated by carriage returns only), you will
have to reformat the text files yourself, which may be done under MS-DOS on a PC using
‘u2m.exe’, or on a Macintosh using third-party software.

The WFDB Software Package is written in highly portable C, and (with the exception
of a few MS-DOS or Unix-specific display or data-acquisition programs) should be easy to
compile with any K&R or ANSI C compiler. The Unix and MS-DOS ‘make’ description
files (‘Makefile’ and ‘Makefile.dos’ in ‘wfdb’ and in each of its subdirectories) should get
you started.

http://www.physionet/physiotools/wfdb/

110 WFDB Programmer’s Guide

Appendix C: WFDB Application Programs 111

Appendix C WFDB Application Programs

This appendix briefly describes the application programs that are included with the
WFDB Software Package. Except where noted otherwise, these applications are usable on
all systems for which the WFDB library is available. For details on using these programs,
refer to the WFDB Applications Guide. (On Unix systems, the contents of the Applications
Guide may also be available as on-line man pages.)

How to use these programs

These programs are kept in directories that vary from system to system; they may not
be in the default search path. If you cannot find them, consult an expert (such as the
person who installed the WFDB library on your system). If you use these programs often,
you may wish to include the directory in which they are kept in your search path.

To use any of these programs, you will need to set the database path first (see Sec-
tion 1.4 [WFDB path], page 16), unless the default database path (‘. /usr/database
http://www.physionet.org/physiobank/database’) is suitable. Programs that accept
time arguments or commands (usually shown as from and to below) use strtim to convert
these strings into sample intervals; hence they accept any of the varieties of standard time
format described earlier (see [timstr and strtim], page 38). Programs that accept annota-
tion mnemonics as arguments or commands (usually shown as code below) use strann to
interpret them; for a list of legal mnemonics, see Chapter 4 [Annotation Codes], page 61.
Where record or annotator names are required as command arguments, they are indicated
below as record or annotator.

In the remainder of this appendix, you will find usage examples and capsule descriptions
of the standard WFDB application programs. The square brackets (‘[]’) in some of the
usage examples surround arguments that may be omitted; the brackets themselves are not
to be included in the command line. Where an ellipsis (‘...’) appears, it indicates that
the previous argument may be repeated. If invoked without any arguments, or with a ‘-h’
(help) option, most of these programs print a brief synopsis of how they are used.

Annotation File Processing

ann2rr -a annotator -r record [options ...]

rr2ann -a annotator -r record [options ...]

rdann -a annotator -r record [-f from -t to -p type ...]

wrann -a annotator -r record

sumann -a annotator -r record

tach -a annotator -r record [options ...]

Programs ‘ann2rr’ and ‘rr2ann’ respectively list RR (inter-beat) intervals in text format
from an annotation file, and create an annotation file from a text-format list of RR intervals.

The program ‘rdann’ is an annotation printer similar to the one shown in chapter 6 (see
[Example 3], page 76). The optional from and to arguments (in standard time format)
specify a portion of the annotation file to be printed, and one or more type arguments

112 WFDB Programmer’s Guide

(annotation mnemonics) can be given to restrict the output to annotations that are of the
specified type(s).

The output of ‘rdann’ can be converted back into an annotation file by providing it
as the standard input of ‘wrann’. This can be useful for editing annotation files in some
cases; they can be converted to ASCII format by ‘rdann’, edited using any text editor, and
converted back into annotation files by ‘wrann’.

A summary of the contents of an annotation file can be obtained using ‘sumann’. The
summary includes the number of annotations of each type, and the duration and number
of episodes of each rhythm and signal quality.

‘tach’ generates a uniformly sampled, smoothed, instantaneous heart rate sequence from
an annotation file.

Evaluation of ECG Analyzers

bxb -r record -a reference-annotator test-annotator [options ...]

rxr -r record -a reference-annotator test-annotator [options ...]

mxm -r record -a reference-annotator test-annotator [options ...]

epic -r record -a reference-annotator test-annotator [options ...]

sumstats file

plotstm file

ecgeval
nst [options ...]

The motivation for developing the MIT and AHA databases was to provide material for
evaluating the accuracy of arrhythmia detectors, particularly with respect to ventricular
arrhythmias. Between 1984 and 1987, the Association for the Advancement of Medical In-
strumentation (AAMI) sponsored the development of a recommended practice (designated
ECAR) for using the databases for this purpose. The aim of ECAR was to specify the
evaluation methodology in sufficient detail to permit reproducible testing, and to encour-
age informed comparisons of the performance of ventricular arrhythmia detectors in the
analysis of these standard test recordings. More recently, the AAMI has developed, and
ANSI has adopted as American National Standards, a standard (ANSI/AAMI EC38:1998)
for ambulatory electrocardiographs, and a companion standard (ANSI/AAMI EC57:1998)
for testing and reporting performance results of cardiac rhythm and ST segment measure-
ment algorithms. EC38 and EC57 specify standard protocols for evaluating the automated
analysis algorithms that are included in many such devices. These protocols include those
developed for the earlier recommended practice, and extend them to evaluation of supraven-
tricular arrhythmia and ischemia detection. EC38 and EC57 specify the use of ‘bxb’, ‘rxr’,
‘mxm’, and ‘epic’ to perform evaluations, and further specifies the use of the MIT DB (as
well as two other databases included on the MIT-BIH Arrhythmia Database CD-ROM),
the AHA DB, and (for devices that perform analysis of the ST segment) the ESC DB. If
you are interested in this subject, obtain copies of the American National Standards for
Ambulatory Electrocardiographs (ANSI/AAMI EC38:1998) and for Testing and Report-
ing Performance Results of Cardiac Rhythm and ST Segment Measurements Algorithms
(ANSI/AAMI EC57:1998; see Appendix E [Sources], page 121).

To evaluate an arrhythmia detector using this software, obtain for each WFDB record
to be used in the test an annotation file containing the detector’s analysis of each beat.

Appendix C: WFDB Application Programs 113

These are referred to as the ‘test’ annotation files (or the ‘algorithm’ annotation files, in
EC38 and EC57). The placement of the beat annotations must match those in the reference
annotations within 150 msec; thus it is not necessary to place annotations precisely at the
PQ junction (as in the AHA DB reference annotations) or on the major local extremum
(as in the MIT DB reference annotations). If the detector is capable of shut-down (i.e.,
if it inhibits its QRS detection function during periods that it judges are unreadable), the
test annotation files should include a NOISE annotation with subtyp = -1 at the beginning
of each period of shut-down, and a NOISE annotation with any other subtyp at the end
of each such period. (If the record ends while the detector is shut down, the annotation
file should include a final ‘end of shut-down’ annotation as above to permit correct shut-
down accounting.) If the detector is capable of ventricular fibrillation detection, the test
annotation files should also include VFON and VFOFF annotations; it is not necessary to mark
flutter waves (use FLWAV annotations to do so if desired). See the man page for ‘epic’, in
the WFDB Applications Guide, for information on marking atrial fibrillation, ischemic ST
episodes, and ST deviation measurements in test annotation files. Any annotations that
appear in the first five minutes of an annotation file are treated as belonging to the detector’s
learning period, and are not used in the evaluation. The evaluation software examines such
annotations only to determine the detector’s state (normal, shut down, or in VF) at the
beginning of the test period.

Program ‘bxb’ implements the beat-by-beat comparison algorithm described in EC38
(section 4.2.14.2.2) and EC57 (section 4.3.2). By default, the output is in a self-explanatory
matrix format. The ‘-L’ option, which must be followed by two file names, specifies that
the output of ‘bxb’ should be written in line format, for further processing by ‘sumstats’.
The line-format output includes column headings only if the output file must be created
from scratch. In this way, ‘bxb’ can be used repeatedly to build up a line-format tables
for multiple records. Among the other options is ‘-o’, which causes ‘bxb’ to generate an
output annotation file (with annotator name ‘bxb’) indicating agreements and discrepancies
between the input annotators.

‘rxr’ can be used to performed the run-by-run comparison described in EC38 (section
5.2.14) and in EC57 (sections 4.4.3 and 4.4.4). ‘mxm’ compares heart rate, HRV, or other
measurements, as described in EC38 (section 4.2.14.2.3). ‘epic’ evaluates VF and AF
detection, and ST analysis, as described in EC38 (sections 5.2.14), and EC57 (sections 4.5
and 4.6). These programs also accept a ‘-L’ option to produce line-format output as for
‘bxb’.

‘sumstats’ derives the record-by-record, episode-by-episode, and aggregate performance
statistics described in EC38 (section 4.2.14.3) and in EC57 (sections 3.5.2 and 3.5.3) from
line-format output files produced by ‘bxb’, ‘rxr’, ‘mxm’, and ‘epic’. The input file must
include the column headings so that ‘sumstats’ can recognize the file type. The output
includes a copy of the input, with aggregate statistics appended at the end. ‘plotstm’
generates a PostScript scatter plot of ST measurement comparisons gathered by ‘epic’, as
described in EC57 (section 4.6.2).

The easiest way to use these programs is to run ‘ecgeval’, which generates a script
(batch) file to run ‘bxb’, ‘rxr’, etc., for each record in a database. See Evaluating ECG
Analyzers (in the WFDB Applications Guide) for details.

By adding noise to annotated ECG records, the noise tolerance of an arrhythmia detector
can be measured. This idea was described by the author, along with W.K. Muldrow and

114 WFDB Programmer’s Guide

R.G. Mark, in “A noise stress test for arrhythmia detectors”, Computers in Cardiology
11:381-384 (1984). Program ‘nst’ adds calibrated amounts of noise to ECGs (or other
signals), generating an output record in WFDB format. ‘nst’ was used to generate the
graded series of noisy ECG records in the ‘nstdb’ directory of the MIT-BIH Arrhythmia
Database CD-ROM. These records are among those specified as standard test material by
EC38 (section 4.2.14.2) and EC57 (section 3.2).

Signal Processing Applications

rdsamp -r record [options ...]

wrsamp -r record [options ...]

snip -i input-record -n new-record [options ...]

xform -i input-record [options ...]

fir [options ...] -c coefficient ...

sigamp -r record [options ...]

sqrs -r record [options ...]

sample [options ...]

calsig -r record [options ...]

‘rdsamp’ prints samples from the specified record; ‘-f’ and ‘-t’ options may be used to
specify a range of sample numbers, and a subset of signal numbers may be selected using
the ‘-s’ option. The output of ‘rdsamp’, or any similar text, can be converted into a WFDB
record using ‘wrsamp’.

To copy an excerpt of a longer record, use ‘snip’, which creates new header and signal
files for new-record in the current directory. The beginning and end of the excerpt are
specified using ‘-f’ and ‘-t’ options as for ‘rdsamp’. Annotator names may follow a ‘-a’
option; in this case excerpts from the specified annotation files are copied as well (the
annotations are appropriately time-shifted).

‘xform’ is a more general version of ‘snip’; its main uses are for reformatting, rescaling,
and sampling rate conversion. You may create a ‘hea’ file specifying the desired format,
sampling frequency, ADC zero levels, signal gains, etc., and supply it to ‘xform’ using the
‘-o’ option; if you do not do so, ‘xform’ obtains the required information interactively.
‘xform’ accepts all of the options used by ‘snip’, as well as several others.

Program ‘fir’ is a general-purpose FIR filter for WFDB records, similar to the one
discussed in chapter 6 (see [Example 7], page 81).

‘sigamp’ measures signal amplitudes (either baseline-corrected RMS amplitudes or peak-
to-peak amplitudes); it may be useful for calibrating signals (together with ‘calsig’) or for
determining signal gains for ‘nst’.

‘sqrs’ is a slightly modified version of the QRS detector discussed in chapter 6 (see
[Example 10], page 90). Options allow specification of the signal and interval to be analyzed
and the detection threshold.

Program ‘sample’ is an MS-DOS application that uses a Microstar Laboratories DAP
1200- or 2400-series ISA (AT bus) analog interface board (see Appendix E [Sources],
page 121) to generate database records from analog signals, or to generate analog signals
from database records. If you wish to use other hardware for these purposes, refer to
chapter 6 (see [Example 8], page 84) and to the source for ‘sample’ as models.

Appendix C: WFDB Application Programs 115

If you create your own database records using ‘sample’ or other means, program ‘calsig’
may be useful for determining signal gains and offsets if your signals include standard cal-
ibration pulses or identifiable signal levels. ‘calsig’ incorporates two independent algo-
rithms for measuring calibration pulses; it rewrites header files based on its measurements.

Graphical Applications

wave -r record [-a annotator]

view record annotator

wview record annotator

pschart [[options ...] script ...]

psfd [[options ...] script ...]

‘wave’ is an X Window System client application for viewing and editing WFDB records.
(‘wave’ is not included in the WFDB software package, but is available separately; see
Appendix E [Sources], page 121.) ‘wave’ can be run on Unix systems, and can be accessed
remotely using networked PCs or other systems for which X11 servers are available. Run
‘wave’ without any arguments to obtain instructions for printing its on-line manual.

‘view’, included on the MIT-BIH Arrhythmia Database and European ST-T Database
CD-ROMs, among others, is an MS-DOS application for viewing WFDB records on CGA,
EGA, VGA, SVGA, XGA, or Hercules graphics-capable PCs. See ‘bin.doc’ in the ‘bin’
directory of the CD-ROM for more information.

‘wview’, included on recent (1995 and later) CD-ROMs and also available separately (see
Appendix E [Sources], page 121, is an MS-Windows application for viewing WFDB records.
It has most of the display capabilities of ‘wave’, but lacks support for annotation editing.

‘pschart’ and ‘psfd’ produce annotated “chart recordings” and “full-disclosure” plots
that can be printed on PostScript devices. These programs were used to prepare the MIT-
BIH Arrhythmia Database Directory and the European ST-T Database Directory.

116 WFDB Programmer’s Guide

Appendix D: Extensions 117

Appendix D Extensions

This section may be helpful if you wish to extend the capabilities of the WFDB library,
or if you wish to port it to another environment. In order to make use of the information
in this section, you should have the WFDB library sources (see Appendix E [Sources],
page 121). The sources are distributed among four ‘include’ (‘.h’) files and five ‘.c’ files:

wfdb.h Constant and structure definitions, and function prototypes
ecgcodes.h Annotation codes
ecgmap.h Annotation code mapping macros
wfdblib.h External definitions for private WFDB library functions

wfdbinit.c Functions wfdbinit, wfdbquit, and wfdbflush
signal.c Functions for signals
calib.c Functions for signal calibration
annot.c Functions for annotations
wfdbio.c Low-level I/O and operating system-dependent functions

The first three of these files are the standard ‘include’ files that are usually obtained
by ‘#include <wfdb/file.h>’ statements. When modifying the WFDB library, however,
make any necessary changes in the copies of these files that are kept in the library source
directory. Install the modified versions of the ‘.h’ files in the system’s ‘include’ directory
after installing the modified WFDB library.

The cleanest mechanism for adding additional fields to ‘hea’ files is to include them in
‘info’ strings (see [getinfo], page 51), rather than by modifying the code that reads and
writes ‘hea’ files (in ‘signal.c’).

A common problem is the need to import signal files generated by other software. Often
this problem can be solved by writing a format conversion program that uses input functions
provided with the other software to read the signal files, and putvec to write them in one
of the formats supported by the WFDB library. This solution is unlikely to be satisfactory
if you have many large signal files to import, however, and you may wish to arrange for
getvec to read the imported files directly. This may be done by defining a new signal file
format, as outlined below.

To define a new format for signal files, choose a numeric code to represent your format.
(Values between 900 and 999 are reserved for user-defined signal file format codes.) In
‘wfdb.h’, add your format code to FMT_LIST and increment NFMTS. In ‘signal.c’, define
functions (macros if possible for efficiency) for reading and writing single samples; these
should be named rnnn and wnnn , where nnn is your format code. Follow the examples in
‘signal.c’; it will almost certainly be easier to make use of the existing macros r8 and
w8 than to begin from scratch. Add additional case statements in getvec and putvec,
again following the existing models. You will also need to add a case in isgsettime,
including a formula to determine the number of bytes needed per sample, given the number
of signals multiplexed. (All currently-defined formats use fixed-length encoding. If you wish
to implement variable-length encoding, it may be easiest to implement an indexed-search
method for isgsettime in such cases.) If the ADC resolution exceeds the number of bits
in a C int on your system, change the typedef for ‘WFDB_Sample’ in ‘<wfdb/wfdb.h>’ as
necessary; be aware that this change is likely to require additional changes to application
programs (use ‘lint’ or an ANSI C compiler to check your code).

118 WFDB Programmer’s Guide

Although the WFDB library generally assumes that signal files are “pure”, it is possible
to read imported signal files that contain prologs (data that precede the first sample). To
do so, you must construct a header file in which the format fields encode the length of the
prolog in bytes (you can do this manually, or use wfdbsetstart, see [wfdbsetstart], page 53,
for this purpose). For example, a signal file with a 512-byte prolog followed by format 16
samples would be specified using ‘16+512’ in the format field or fields (if the file contains
more than one signal, the format fields for all signals in the file must be identical). Note
that this facility is provided only for signal file import; the WFDB library is not equipped
to create signal files with embedded prologs.

In a similar fashion, though with substantially more effort in most cases, you may define
a new format for annotation files. Add additional stat values for reading and writing to
the list in ‘wfdb.h’. In ‘annot.c’, add additional case statements and code to annopen,
getann, putann, and wfdb_anclose. If you are designing a new format, you may wish to
specify a ‘magic number’ with which your files will begin, to allow annopen to recognize
the format automatically; a good choice of such a number is one in which the first byte is
non-zero (to distinguish it from AHA format files) and the high six bits of the second byte
are zero (to distinguish it from MIT format files).

Some users may wish to define additional annotation codes. An easy and portable way
to accomplish this is to use setannstr and setanndesc within programs that create your
annotation files, before opening them using annopen (or wfdbinit). Annotation files created
in this way contain modification labels at the beginning that document the non-standard
code definitions, and that permit them to be read properly by standard WFDB applications.
Another solution is to modify the WFDB library. This method has the disadvantage that all
of your applications that read annotation files must be recompiled, and they may no longer
read standard annotation files properly. If despite this disadvantage you prefer to modify
the WFDB library, begin by defining symbolic names and numeric values for your new
codes in ‘ecgcodes.h’. (Values between 42 and 49 are reserved for user-defined annotation
codes. Unused values less than 42 may be assigned in future versions of the WFDB library,
and values greater than 49 are reserved to indicate the presence of optional fields such as
subtyp.) Next, decide how the new codes are to be mapped by isqrs, map1, map2, mamap,
and annpos, and set the appropriate entries in each of the code map arrays in ‘ecgmap.h’.
Finally, add mnemonic and descriptive strings for the new codes in the cstring, astring,
and tstring arrays in ‘annot.c’.

The modular design of the library makes it fairly easy to remove unneeded functionality
in order to conserve memory for special applications. The ‘calib.c’ package is not ref-
erenced by any other WFDB library modules. For signal processing applications that do
not involve annotations, the entire ‘annot.c’ package may be removed (with trivial mod-
ifications to the functions in ‘wfdbinit.c’). If you wish to add functions to the library,
you will find that it will be easier to maintain your modified version and to merge updates
if you preserve the existing arrangement of functions, which requires no global variables.
Rather than defining global variables, consider implementing query functions (global-scope
functions that read or write local variables). If you wish to define new types of binary files,
consider using the low-level I/O routines in ‘wfdbio.c’ for reading and writing them in a
machine-independent format.

Porting the WFDB library to another environment is a straightforward operation if an
ANSI C compiler is available in the target environment. Since all direct access to database

Appendix D: Extensions 119

files is performed using the (private) function wfdb_open, it is possible to include file name
translation in that function if needed, to accommodate file naming schemes that may be
imposed by the operating system or other requirements. If the notion of environment
variables is foreign to the target environment, getwfdb can be modified to read the WFDB
path from a file. You may wish to modify the private function wfdb_error (which is
responsible for all error reporting from WFDB library functions) if the ‘standard error
output’ is unavailable or inadequate for use in the target environment. All of these functions
are contained within ‘wfdbio.c’; it is unlikely that any other code will require changes for
a port.

If you encounter errors while compiling ‘signal.c’, you may wish to try using the
functions provided in that file as alternatives to the standard macros r16 and w16; the
fully-expanded versions of these macros are quite complex and are known to cause difficulty
for at least one (now obsolete) C compiler. (Define the symbol ‘BROKEN_CC’ while compiling
‘signal.c’ in order to obtain the function versions of r16 and w16.) While compiling
‘signal.c’, it may be necessary to disable code optimization for some C compilers; no
current compilers are known to have such limitations, however.

120 WFDB Programmer’s Guide

Appendix E: Sources 121

Appendix E Sources

This section is a compendium of sources for databases and related materials that may be
useful to readers of this guide. Please send any corrections to the author (george@mit.edu).

WFDB Programmer’s Guide (this guide)
WFDB Applications Guide
WAVE User’s Guide
MIT-BIH Arrhythmia Database (selected records)
MIT-BIH Arrhythmia Database Directory
MIT-BIH Polysomnographic Database
MIMIC Database
Other reference databases of physiologic signals
WFDB Software Package
W3C libwww sources
XView toolkit (needed for WAVE)

WWW: http://www.physionet.org/
PhysioNet offers free access via the web to large collections of recorded physio-
logic signals and related open-source software. PhysioNet is a public service of
the Research Resource for Complex Physiologic Signals, funded by the National
Center for Research Resources of the National Institutes of Health. The master
PhysioNet web server is located at MIT in Cambridge, Massachusetts; about
ten public mirrors are located elsewhere in the US and around the world (see
http://www.physionet.org/mirrors/ for a list).

MIT-BIH Arrhythmia Database CD-ROM
MIT-BIH Polysomnographic Database CD-ROM
Software for Physiologic Databases with Samples CD-ROM

MIT-BIH Database Distribution
MIT Room E25-505A
77 Massachusetts Ave.
Cambridge, MA 02139 USA

email: george@mit.edu
WWW: http://ecg.mit.edu/
telephone: +1 617 253 7424

European ST-T Database CD-ROM
European ST-T Database Directory
VALE Database Directory

National Research Council (CNR) Institute of Clinical Physiology
Dept. of Bioengineering and Medical Informatics
via Trieste, 41
56126 PISA, Italy

email: taddei@ifc.pi.cnr.it

mailto:george@mit.edu
http://www.physionet.org/
http://www.physionet.org/mirrors/
mailto:george@mit.edu
mailto:taddei@ifc.pi.cnr.it

122 WFDB Programmer’s Guide

telephone: +39 050 501145
telefax: +39 050 503596

Over half of this database has been contributed to PhysioNet (see above), from
which it may be downloaded freely.

Long-Term ST Database

Franc Jager
Laboratory of Biomedical Computer Systems and Imaging
University of Ljubljana
Faculty of Computer and Information Science
Trzaska 25
1000 Ljubljana, Slovenia

email: lbcsi@fri.uni-lj.si

Over half of this database has been contributed to PhysioNet (see above), from
which it may be downloaded freely.

AHA Database for Evaluation of Ventricular Arrhythmia Detectors

ECRI
5200 Butler Pike
Plymouth Meeting, PA 19462 USA

email: hshupack@shrsys.hslc.org
WWW: http://www.healthcare.ecri.org/
telephone: +1 610 825 6000

MGH/Marquette Foundation Waveform Database CD-ROMs

Anaesthesia/Bioengineering Unit
Massachusetts General Hospital
Fruit St.
Boston, MA 02114 USA

email: cooper@etherdome.mgh.harvard.edu
telephone: +1 617 726 8824

This is a large database of multi-channel recordings (3 ECG leads, radial ar-
terial, pulmonary arterial, and central venous pressure, respiration, and CO2),
which has been issued on 10 CD-ROMs. In 2003, this database was contributed
to PhysioNet (see above), from which it can be downloaded freely.

American National Standard ANSI/AAMI EC38:1998, Ambulatory Electrocardiographs
American National Standard ANSI/AAMI EC57:1998 Testing and Reporting Performance

Results of Cardiac Rhythm and ST Segment Measurement Algorithms

Association for the Advancement of Medical Instrumentation
1110 N Glebe Road, Suite 220
Arlington, VA 22201 USA

mailto:lbcsi@fri.uni-lj.si
mailto:hshupack@shrsys.hslc.org
http://www.healthcare.ecri.org/
mailto:cooper@etherdome.mgh.harvard.edu

Appendix E: Sources 123

WWW: http://www.aami.org/
telephone: +1 703 525 4890
telefax: +1 703 276 0793

Computers in Cardiology

WWW: http://www.cinc.org/
CinC is the major scientific meeting at which current research in ECG signal
processing and modelling is discussed; the proceedings of the conference are
probably the single best source of information in print about these topics. CinC
conferences have taken place annually since 1974, usually in September; in even-
numbered years, they are convened in North America, and in Europe in odd-
numbered years. The deadline for submission of abstracts is 1 May each year.
Proceedings of the conferences are published by the IEEE, and usually appear
about 3 months after the date of the conference. CinC will be in Chicago in
2004 and in Lyon in 2005.

Proceedings of Computers in Cardiology (ISSN 0276-6574)

IEEE Customer Service
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331 USA

email: customer.service@ieee.org
WWW: http://www.ieee.org/ieeestore/
telephone: 1 800 678 IEEE (USA and Canada) or +1 732 981 0060
telefax: +1 732 981 9667

GNU emacs
gcc (the GNU portable C/C++ compiler)
ghostscript
GNU tar
GNU gzip (free and improved replacement for ‘compress’)
Larry Wall’s ‘patch’ program, with GNU revisions
GNU groff, gtbl, and related text formatting utilities
GNU info and makeinfo (standalone hypertext browser and formatter)

Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307 USA

email: gnu@gnu.org
WWW: http://www.gnu.org/
telephone: +1 617 542 5942

GNU software is included in all Linux distributions (in fact, since Linux is the
name of the kernel only, and the largest component of these distributions is ac-
tually GNU software, it is proper to refer to them as GNU/Linux distributions).

http://www.aami.org/
http://www.cinc.org/
mailto:customer.service@ieee.org
http://www.ieee.org/ieeestore/
mailto:gnu@gnu.org
http://www.gnu.org/

124 WFDB Programmer’s Guide

GNU software for all popular (and many other) operating systems is available
on CD-ROM or tape from the address above, and is also freely available by
anonymous FTP from ftp.gnu.org and and many other archive sites. Please
support the FSF with a donation if you use GNU software.

TEX for Unix systems

This software is available by anonymous FTP from CTAN (Comprehensive
TeX Archive Network) mirrors, including ftp.tex.ac.uk, ftp.dante.de, and
ctan.tug.org. Many of the sources of GNU software (above) also make TEX,
etc. available. CTAN is indexed on the World Wide Web (one such index is
http://www.ctan.org/).

The Unix TEX distribution is also distributed on CD-ROM and in other tape
formats by the Free Software Foundation (address above) and others. It is also
included with most GNU/Linux distributions (see below).

Several commercial implementations of TEX for MS-DOS, MS-Windows, and
Mac OS are widely available; visit the web site of the TEX Users Group (below)
for pointers.

General information on TEX

TeX Users Group
PO Box 2311
Portland, OR 97208-2311 USA

WWW: http://www.tug.org/
email: office@tug.org
telephone: +1 503 223 3960
telefax: +1 503 223 9994

W3C libwww libraries

WWW: http://www.w3.org/Library/

The libwww libraries, created and maintained by the World Wide Web Con-
sortium, provide the low-level functions needed to support the WFDB library’s
(optional) NETFILES capability. The libwww libraries are also available from
PhysioNet.

X11R6 (the X Window System, Version 11, Release 6)

email: xorg_info@x.org
WWW: http://www.x.org/
telephone: +1 781 376 8200
telefax: +1 781 376 9358

Sources for XView are available from PhysioNet.

http://www.ctan.org/
http://www.tug.org/
mailto:office@tug.org
http://www.w3.org/Library/
http://www.x.org/

Appendix E: Sources 125

GNU/Linux
GNU/Linux is a POSIX-compliant reimplementation of the Unix operating
system, written by Linus Torvalds and a cast of thousands. It runs on Intel
386, 486, and Pentium PCs, among others. For information about GNU/Linux,
visit the web site of the Linux Documentation Project:

WWW: http://www.linuxdoc.org/
GNU/Linux is freely available by anonymous FTP in source and binary form
from many sites, including:

tsx-11.mit.edu
metalab.unc.edu
ftp.funet.fi

Many low-cost (typically US$10 to US$30) distributions of GNU/Linux on CD-
ROMs are widely available. Among the more popular are:

Debian (non-commercial)

WWW: http://www.debian.org/

Gentoo (non-commercial)

WWW: http://www.gentoo.org/

MandrakeSoft S.A.
43, rue d’Aboukir
75002 Paris
France

email: webmaster@linux-mandrake.com
WWW: http://www.linux-mandrake.com/
telephone: +1 626 296 6290 (USA), +33(0) 1 40 41 00 41 (France)
telefax: +1 801 765 1313

Red Hat
2600 Meridian Parkway
Durham, NC 27713

email: orders@redhat.com
WWW: http://www.redhat.com/
telephone: 1 888 733 4281 (USA and Canada) or +1 919 547 0012
telefax: +1 919 547 0024

Slackware

http://www.linuxdoc.org/
http://www.debian.org/
http://www.gentoo.org/
mailto:webmaster@linux-mandrake.com
http://www.linux-mandrake.com/
mailto:orders@redhat.com
http://www.redhat.com/

126 WFDB Programmer’s Guide

email: info@slackware.com
WWW: http://www.slackware.com/

S.u.S.E. GmbH
Schanzaeckerstr. 10
D-90443 Nurnberg
Germany

email: suse@suse.de
WWW: http://www.suse.de/ (Germany), http://www.suse.com/ (USA)
telephone: +49 911 74053 31
telefax: +49 911 7417755

Compilers and software development systems
Any ANSI/ISO C compiler (or any K&R C compiler, if you still have one)
can be used to compile the WFDB library and applications that use it. Under
Unix and GNU/Linux, high-quality free compilers and development tools are
universally available and taken for granted. Even if you must work in the MS-
Windows or MS-DOS environment, however, there is no reason to purchase
expensive, bloated, and inferior proprietary compilers and software development
systems, since there are several excellent, highly recommended, and completely
free alternatives based on the GNU C/C++ compiler (gcc).

Using any of these packages does not limit you to creating free (open source)
software, although you are certainly encouraged to do so. If you wish to develop
and sell proprietary software using gcc, this is certainly possible, with fewer and
less severe restrictions than you will encounter if using a commercial compiler.

Cygwin

WWW: http://www.cygwin.com/

This is a freely available software development platform for MS-Windows
9x/NT/2000/ME/XP, based on GNU gcc and a large set of Unix utilities
developed by the GNU project and ported to MS-Windows by Cygnus
Software (now part of Red Hat, see above). Cygwin itself is open-source
software and is highly recommended in preference to commercial C/C++
compilers if you must work in the MS-Windows environment. The WFDB
Software Package binaries available via PhysioNet are created using Cygwin.

MinGW

WWW: http://www.mingw.org/

This is another freely available software development platform for MS-Windows,
also based on gcc and many of the same utilities as Cygwin.

djgpp

WWW: http://www.delorie.com/djgpp/

A freely available software development platform for MS-DOS, including gcc, a
free 32-bit DOS extender, and many of the same utilties as Cygwin and MinGW.

mailto:info@slackware.com
http://www.slackware.com/
mailto:suse@suse.de
http://www.suse.de/
http://www.suse.com/
http://www.cygwin.com/
http://www.mingw.org/
http://www.delorie.com/djgpp/

Appendix E: Sources 127

Microstar DAP analog interface boards for PCs

Microstar Laboratories
2265 116th Avenue N.E.
Bellevue, WA 98004 USA

email: info@mstarlabs.com/
WWW: http://www.mstarlabs.com/
telephone: +1 425 453 2345
telefax: +1 425 453 3199

Web browsers

The most popular Web browsers may be downloaded by anonymous FTP.
Netscape
FTP: ftp.netscape.com
WWW: http://www.netscape.com/

Mozilla
FTP: ftp.mozilla.org
WWW: http://www.mozilla.org/

MS Internet Explorer
FTP: ftp.microsoft.com
WWW: http://www.microsoft.com/

mailto:info@mstarlabs.com/
http://www.mstarlabs.com/
http://www.netscape.com/
http://www.mozilla.org/
http://www.microsoft.com/

128 WFDB Programmer’s Guide

Answers to Selected Exercises 129

Answers to Selected Exercises

3. 280 adu = (280 adu −(−300 adu)) / 10 adu/mmHg = 58 mmHg.

4. 120 mmHg = 120 mmHg * 10 adu/mmHg + (−300 adu) = 900 adu.

5. The range of sample values is −2048 to +2047 adu, or −174.8 to +234.7 mmHg.

6. We don’t know how big ‘signal.dat’ is, because we don’t know how many other
signals are multiplexed with the BP signal. If there are no others, ‘signal.dat’
is 1,500,000 bytes (nsamp * 1.5 bytes/sample). One-third of the space occupied
by ‘signal.dat’ could be saved if it were converted to format 8. The maximum
slew rate representable in format 8 is 127 adu/sample interval * 100 sample
intervals/sec / 10 adu/mmHg = 1270 mmHg/sec.

7. One way to save a little space is to resample the signal at 120 Hz, and then
change to format 8 (maximum slew rate = 1524 mmHg/sec). This can be done
using ‘xform’; it reduces the storage requirement by one-fifth.

8. On a Unix system that supports the ‘graph’ and ‘plot’ commands, a simple
solution is to write the sample numbers and values on the standard output in
two-column ASCII format. The plotting is then performed by the pipeline:

your-program | graph | plot

11. Line 5 allocates storage for a pointer; in line 12, getann needs storage for the
annotation structure. ‘t’ is declared as an int in line 7, which works on a
32-bit machine, but probably not on a 16-bit machine. Line 11 contains three
errors (did you find all of them?): the first argument to annopen should be a
character string, not an integer; the second argument should be a pointer to a
WFDB_Anninfo object, not the object itself; and (as written) the ‘if’ condition
is satisfied only if annopen fails (it returns zero if successful). Line 12 also
contains three errors: the first argument to getann is the annotator number,
but the first (in this case, the only) input annotator is 0, not 1; the second
argument to getann should be, but is not, a pointer to an allocated WFDB_
Annotation structure; and the ‘while’ loop terminates only if getann succeeds.
There are two errors in lines 13 and 14: ‘annot.time’ is a long integer (unless
long is equivalent to int on your machine, ‘%d’ is an incorrect specification
for printing it); and the functions timstr and mstimstr return pointers to
static storage that is overwritten by each call. If the other errors are fixed, the
printf statement will print the same string twice (which one depends on the
order of evaluation of function arguments, which may vary between compilers).
Having fixed all of these errors, the output is still incorrect, since getann returns
rhythm and signal quality annotations as well as beat labels (only the latter
should be used for calculating R-R intervals), and ‘t’ is not initialized, which
makes the first interval wrong in any case. As for the extra credit question, the
program probably produces nothing at all on its standard output! If, by some
miracle, annopen succeeds, it returns zero, and the body of the ‘if’ is never
executed. If annopen simply fails, perhaps because the input annotation file
can’t be opened, getann also fails, and the program probably dumps core with
an illegal memory reference in the printf statement, since annot hasn’t been

130 WFDB Programmer’s Guide

initialized. More likely, the program will dump core in annopen, attempting to
reference memory location 100.

Concept Index 131

Concept Index

A
AC-coupled signal (defined) 99
AC-coupled signals . 58
access to multiple records . 68
ADC (defined). 99
ADC resolution . 57
ADC resolution (defined) . 99
ADC zero . 57
ADC zero (defined) . 99
adu . 2, 56
adu (conversion to and from physical units) 40
adu (conversion to and from voltage) 41
adu (defined) . 99
AHA annotation code . 63
AHA DB . 1, 122
AHA DB (defined) . 99
AHA format . 66
AHA format (defined) . 99
AHA-format annotation file 58
annotation . 2
annotation (canonical order) . . . 17, 45, 46, 71, 102
annotation (changing or deleting) 71
annotation (defined) . 99
annotation aux string . 60, 62
annotation code . 61
annotation code (conversion to and from string)

. 36, 37
annotation code (defined) . 99
annotation code (legal) . 62
annotation code field . 59
annotation code mapping . 62
annotation code strings (setting) 37
annotation comparator 3, 112, 113
annotation editor . 3
annotation file . 66
annotation file (defined) . 99
annotation files (opening) . 22
annotation I/O . 31
annotation location . 71
annotation location (defined) 102
annotation order . 71
annotation structure . 59
annotation subtype . 59
annotation time . 59
annotation type . 59
annotations (non-sequential access) 34
annotations (reading) . 31, 32
annotations (writing) . 33
annotator . 2
annotator information structure 58
annotator name . 58
annotator name (defined) . 99
annotator number . 59
annotator number (defined). 99

arguments . 21
atr . 2
atr (defined) . 100
attributes of annotators . 58
attributes of signals (global) 56
attributes of signals (local) 59
aux string (annotation) 60, 62

B
base counter value . 48
base counter value (defined) 100
base time (defined) . 100
base time (setting) . 48
baseline . 57
baseline amplitude (defined) 100
beat label . 2
block size . 57
buffer size (setting) . 51, 52
byte offset . 53, 104

C
C++ bindings . 15
calibration (retrieving) . 42
calibration (storing) . 42
calibration file . 17, 66
calibration file (defined) . 100
calibration file (reading) . 42
calibration functions . 42
calibration information structure 58
calibration list . 42, 58
calibration list (defined) . 100
calibration list (discarding) 43
calibration list (writing) . 43
calibration pulse limits . 58
calibration pulse shape . 58
canonical order of annotations . . 17, 45, 46, 71, 102
CD-ROM . 121, 122
CD-ROM (defined) . 100
changing an annotation . 71
changing annotation code strings 37
changing sampling frequency 47
changing the WFDB path . 49
character devices (as signal files) 69
checksum of signal file . 57
closing annotation files . 46
closing WFDB files . 45
code (annotation) . 61
comparator (annotation) 3, 112, 113
compiling . 14
concatenating records . 68
conversion between adus and physical units 40
conversion between adus and voltage 41

132 WFDB Programmer’s Guide

conversion between annotation code and string
. 36, 37

conversion between Julian date and string . . 39, 40

conversion between time and string 38

conversion functions . 36

counter (base) . 48, 100

counter frequency . 48

counter frequency (defined) 100

counter value . 48

counter value (defined) . 100

creating a record . 84

creating annotation files . 22

creating header files . 44, 45

creating signal files . 24, 25

cruft (in signal files) . 53, 104

current time . 48

Cygwin . 126

D
database path . 105

database path (changing) . 49

database path (default) . 18

database path (defined) . 101

database path (reading) . 50

database path (setting) . 16

database path file (indirect) 19, 49

date (conversion to and from string) 39, 40

DC-coupled signal (defined) 101

DC-coupled signals . 58

decimation . 27, 28, 30

deleting an annotation . 71

detector (QRS) . 90, 112, 114

difference format . 56

digital filter 3, 80, 81, 90, 93, 114

directories for WFDB files . 16

discarding calibration list . 43

display scale . 58

djgpp . 126

duration of signal file . 57

E
ECG annotation code . 61

ECG waveform editor . 115

elapsed time . 38

Emacs Info . 5

emptying calibration list . 43

error suppression . 46

errors . 21

ESC DB . 121

ESC DB (defined) . 101

examples . 73

external identifiers (restrictions) 17

F

file containing WFDB path 19, 49

file names . 1

file types . 65

filenames of WFDB files (obtaining) 50

filter (digital) 3, 80, 81, 90, 93, 114

finding WFDB files . 16

first difference . 56

flushing calibration list . 43

flushing output annotations and samples 50

flushing WFDB I/O . 45

format (annotation file) . 58

format (signal file) . 56

Fortran bindings . 15

frame (defined) . 101

frame (of samples) . 67

frame interval (defined) . 101

frame rate . 57

frame rate (defined) . 101

frames (reading) . 30

frequency (counter) . 48, 100

frequency multiplier . 67

ftp. 70

function arguments . 21

function name restrictions . 17

function return codes . 21

functions in the WFDB library 21

G

gain . 2, 56

gain (defined) . 101

getvec buffer size . 51

GNU emacs . 5, 123

GNU/Linux . 124

H

hea (defined) . 101

hea file. 65

header file (defined) . 101

header files (creating) . 44, 45

header files (modifying) . 44

header info (reading) . 51

header info (writing) . 51

high-resolution mode (defined) 101

http . 70

Concept Index 133

I
I/O (completing) . 45
indirect WFDB path . 19, 49
Info (GNU emacs) . 5
info (in header files) . 51
info string (defined) . 102
information structure (annotator) 58
information structure (signal) 56
initial value of signal . 56
initialization . 22
input buffer size . 51
interpolation . 8, 27, 28, 30
intersignal skew . 52, 53, 105
isoelectric level . 57

J
Julian date (conversion to and from string) 39,

40

L
label (beat) . 2
legal annotation code . 62
length of signal file . 57
library functions . 21
libwww 11, 14, 19, 70, 103, 107, 108, 121, 124
Linux . 124
loader options . 14
local record . 70
local record (defined) . 102
location (of annotation) . 71
location (of annotations) . 102
low-resolution mode (defined) 102
LTST DB . 122

M
macros . 62
mapping annotation codes . 62
Matlab bindings . 16
MGH DB . 122
MinGW . 126
MIT DB . 1, 121
MIT DB (defined) . 102
MIT format (defined) . 102
MIT-format annotation file 58
mnemonic (annotation) 36, 37
modification label . 36, 37
modification label (defined) 102
modifying header files . 44
multi-frequency record (defined) 102
multi-frequency records 57, 67
multi-frequency records (reading) 28
multi-segment record (defined) 103
multi-segment records . 68
multi-segment records (creating) 45
multifrequency records . 30

multiple record access . 68
multiplexed signal file . 56, 67
multiplexed signal file (defined) 103

N
nested records . 68
NETFILES. 10, 11, 19, 49, 50, 70
NETFILES (defined) . 103
nine-track tape . 69
nine-track tape (defined) . 103
noise stress test . 113
noisy signals (annotating) . 62
non-sequential access . 34
NOTQRS (annotation code) . 62

O
Octave bindings . 16
opening annotation files . 22
opening database files . 22
opening signal files . 23
operating systems (supported) 4
order of annotations . 71
output buffer size . 52
oversampled signal (defined) 103
oversampled signals . 57

P
path (database) . 16
pathnames of WFDB files (obtaining) 50
physical unit (defined) . 103
physical units . 2, 56, 58
physical units (conversion to and from adus) . . . 40
physical zero (defined) . 103
physical zero level . 57
PhysioBank . 70
PhysioNet . 103
piped record . 70
piped record (defined) . 104
pipes (as WFDB files) . 66
plotting scale . 58
pointer arguments . 21
programming examples . 73
prolog (defined) . 104
prolog (in signal files) . 53, 104
pulse limits (calibration) . 58
pulse shape (calibration) . 58
putvec buffer size . 52

Q
QRS annotation code . 62
QRS detector . 90, 112, 114
QRS label . 2

134 WFDB Programmer’s Guide

R
random access . 34
reading 9-track tape . 69
reading annotations . 31, 32
reading calibration files . 42
reading signals . 29, 30
reading the WFDB path . 50
record . 1
record (defined) . 104
record (piped) . 70
record name . 1
record name (defined) . 104
record names (restrictions) 44
records (creating) . 84
reference annotation file (defined) 104
reference annotations . 2
reference point (on QRS) . 59
resampling . 8, 27, 28, 30
resolution . 57, 99
restrictions on function and variable names 17
retrieving calibration data . 42
return codes . 21

S
sample . 2
sample (defined) . 104
sample frame . 67
sample interval . 2
sample interval (defined) . 104
sample number . 2
sample number (defined) . 104
samples per frame . 57
sampling frequency . 2, 67
sampling frequency (changing) 47
sampling frequency (defined) 105
scale (amplitude) . 56, 58
scales (time and amplitude) 2
Scilab bindings . 16
selecting database records . 22
setting annotation code strings 37
signal . 2
signal (associating annotation with) 59
signal (defined) . 105
signal file . 65
signal file (defined) . 105
signal file (local) . 70
signal file (on tape) . 69
signal file (piped) . 70
signal file checksum . 57
signal file description . 56
signal file format . 56
signal file length . 57
signal file name . 56
signal files (creating) . 24, 25
signal files (opening) . 23
signal group . 56, 67
signal group (defined) . 105

signal group number (defined) 105
signal I/O . 29
signal information structure 56
signal number . 57
signal number (defined) . 105
signal type . 58
signals (non-sequential access) 34
signals (oversampled) . 57
signals (reading) . 29, 30
signals (writing) . 30
simultaneous records . 68
skew . 52, 53
skew (defined) . 105
skipping through WFDB files 34
sortann . 71
special files (as signal files) 69
standard annotation file . 58
standard I/O (as WFDB files) 66, 70
standard time format (defined) 105
standard time format (examples) 39
start of sample data . 53, 104
storing calibration data . 42
string (conversion to and from annotation code)

. 36, 37
string (conversion to and from Julian date) 39,

40
string (conversion to and from time) 38
structure (annotation) . 59
structure (annotator information) 58
structure (signal information) 56
subtyp (in NOISE annotation) 62
subtype (annotation) . 59
suppressing errors . 46
system-wide database directory (defined) 105

T
tape . 1
tape (defined) . 106
tape counter . 48, 100
time . 2
time (conversion to and from string) 38
time (defined) . 106
time of annotation . 59
time of day (setting) . 48
type (annotation) . 59

U
units (ADC) . 2, 56
units (physical) . 2, 56, 58
Unix character devices (as signal files) 69
unreading annotations . 32
unsorted annotation files . 71
URL . 70
user-defined fields in annotation 59

Concept Index 135

V
variable name restrictions . 17
virtual array of annotations 71
voltage (conversion to and from adus) 41

W
W3C libwww . . . 11, 14, 19, 70, 103, 107, 108, 121,

124
waveform editor . 3, 115, 121
Web browser . 127
WFDB (environment variable) 16
WFDB files (finding) . 16
WFDB library . 1
WFDB library (compiling with) 14
WFDB library functions. 21
WFDB path . . 9, 10, 11, 16, 18, 49, 50, 65, 70, 101,

105, 111, 118
WFDB_AHA_READ . 59
WFDB_AHA_WRITE . 59
WFDB_Anninfo structure (defined) 58
WFDB_Annotation structure (defined) 59
WFDB_Annotator (defined) . 55
WFDB_Calinfo structure (defined) 58

WFDB_Date (defined). 55
WFDB_Frequency (defined) . 55
WFDB_Gain (defined). 55
WFDB_Group (defined) . 55
WFDB_READ . 59
WFDB_Sample (defined) . 55
WFDB_Siginfo structure (defined) 56
WFDB_Signal (defined) . 55
WFDB_Time (defined). 55
WFDB_WRITE . 59
WFDBANNSORT (environment variable) 16, 71
WFDBCAL (environment variable) 16, 17, 42
WFDBGVMODE (environment variable) 16, 68
wrappers for Fortran . 15
wrappers for Matlab, Octave, or Scilab 16
writing 9-track tape . 69
writing annotations . 33
writing calibration list . 43
writing signals . 30

X
X Window System . 124
X11 . 124
XView toolkit . 107, 121

136 WFDB Programmer’s Guide

Function and Macro Index 137

Function and Macro Index

For a number of entries below, the function name is followed by the version number
of the WFDB library in which the function first appeared. Functions for which no such
number appears have been present in all numbered versions of the WFDB library.

A
adumuv . 41
aduphys (6.0). 40
ammap . 63
anndesc (5.3). 36
annopen . 22
annpos (6.0) . 63
annstr (5.3) . 36

C
calopen (6.0). 42

D
datstr . 39

E
ecgstr . 36

F
flushcal (6.0) . 43

G
getann . 31
getbasecount (5.2) . 49
getcal (6.0) . 42
getcfreq (5.2) . 48
getframe (9.0) . 30
getifreq (10.2.6) . 8, 28
getinfo (4.0). 51
getspf (9.6) . 28
getvec . 29
getwfdb . 50

I
iannclose (9.1) . 46
iannsettime . 34
isann . 62
isgsettime . 34
isigopen . 23
isigsettime . 34
isqrs . 62

M
mamap . 63
map1 . 62
map2 . 62
mstimstr . 38
muvadu . 41

N
newcal (6.0) . 43
newheader . 44

O
oannclose (9.1) . 46
osigfopen . 25
osigopen . 24

P
physadu (6.0). 40
putann . 33
putcal (6.0) . 42
putinfo (4.0). 51
putvec . 30

S
sampfreq . 47
sample (10.3.0) . 35
sample_valid (10.3.0) . 35
setanndesc (5.3) . 37
setannpos (6.0) . 63
setannstr (5.3) . 37
setbasecount (5.2) . 49
setbasetime . 48
setcfreq (5.2) . 49
setecgstr . 37
setgvmode (9.0) . 28
setheader (5.0) . 44
setibsize (5.0) . 51
setifreq (10.2.6) . 8, 27, 30
setisqrs (6.0) . 63
setmap1 (6.0). 63
setmap2 (6.0). 63
setmsheader (9.1) . 45
setobsize (5.0) . 52
setsampfreq . 47
setwfdb . 49
strann (5.3) . 37

138 WFDB Programmer’s Guide

strdat . 40

strecg . 37

strtim . 38

T
timstr . 38

U
ungetann (5.3) . 32

W
wfdberror (4.5) . 47
wfdbfile (4.3) . 50
wfdbflush . 50
wfdbgetskew (9.4) . 52
wfdbgetstart (9.4) . 53
wfdbinit . 26
wfdbquiet . 46
wfdbquit . 45
wfdbsetskew (9.4) . 53
wfdbsetstart (9.4) . 53
wfdbverbose (4.0) . 47

	Preface
	Records
	Signals, Samples, and Time
	Annotations
	Applications
	About this Guide
	Recent changes
	Changes in version 10.3.12
	Changes in version 10.3.11
	Changes in version 10.3.10
	Changes in version 10.3.9
	Changes in version 10.3.8
	Changes in version 10.3.6
	Changes in version 10.3.5
	Changes in version 10.3.2
	Changes in version 10.3.0
	Changes in version 10.2.9
	Changes in version 10.2.7
	Changes in version 10.2.6
	Changes in version 10.2.5
	Changes in version 10.2.4
	Changes in version 10.2.3
	Changes in version 10.2.1
	Changes in version 10.2.0
	Changes in version 10.1.6
	Changes in version 10.1.5
	Changes in version 10.1.4
	Changes in version 10.1.3
	Changes in version 10.1.2
	Changes in version 10.1.1
	Changes in version 10.1.0
	Changes in version 10.0.1
	Changes in version 10.0.0

	Using the WFDB Library
	A Trivial Example Program in C
	Compiling a Program with the WFDB Library
	Using the WFDB library with other languages
	The Database Path and Other Environment Variables
	Running the Example Program
	A Note on Identifiers
	More About the WFDB Path
	Exercises

	WFDB Library Functions
	About these functions
	Selecting Database Records
	annopen
	isigopen
	osigopen
	osigfopen
	wfdbinit

	Special Input Modes
	setifreq
	getifreq
	setgvmode
	getspf

	Reading and Writing Signals and Annotations
	getvec
	getframe
	putvec
	getann
	ungetann
	putann

	Non-Sequential Access to WFDB Files
	isigsettime
	isgsettime
	iannsettime
	sample and sample_valid

	Conversion Functions
	annstr, anndesc, and ecgstr
	strann and strecg
	setannstr, setanndesc, and setecgstr
	[ms]timstr
	strtim
	datstr
	strdat
	aduphys
	physadu
	adumuv
	muvadu

	Calibration Functions
	calopen
	getcal
	putcal
	newcal
	flushcal

	Miscellaneous WFDB Functions
	newheader
	setheader
	setmsheader
	wfdbquit
	iannclose
	oannclose
	wfdbquiet
	wfdbverbose
	wfdberror
	sampfreq
	setsampfreq
	setbasetime
	getcfreq
	setcfreq
	getbasecount
	setbasecount
	setwfdb
	getwfdb
	wfdbfile
	wfdbflush
	getinfo
	putinfo
	setibsize
	setobsize
	wfdbgetskew
	wfdbsetskew
	wfdbgetstart
	wfdbsetstart

	Data Types
	Signal Information Structures
	Calibration Information Structures
	Annotator Information Structures
	Annotation Structures

	Annotation Codes
	Macros for Mapping Annotation Codes

	Database Files
	File Types
	Header Files
	Signal Files
	Annotation Files
	Calibration Files
	AHA Format Files

	Using Standard I/O for Database Files
	Multiplexed Signal Files
	Multi-Frequency Records
	Multi-Segment Records
	Simultaneous Access to Multiple Records
	Signals That Are Not Stored in Disk Files
	Piped and Local Records
	NETFILES
	Annotation Order

	Programming Examples
	Example 1: An Annotation Filter
	Example 2: An Annotation Translator
	Example 3: An Annotation Printer
	Example 4: Generating an R-R Interval Histogram
	Example 5: Reading Signal Specifications
	Example 6: A Differentiator
	Example 7: A General-Purpose FIR Filter
	Example 8: Creating a New Database Record
	Example 9: A Signal Averager
	Example 10: A QRS Detector
	Exercises
	Glossary
	Installing the WFDB Software Package
	How to obtain the WFDB Software Package
	Unix, GNU/Linux, and similar operating systems
	Mac OS X (Darwin)
	MS-Windows
	Other systems
	WFDB Application Programs
	How to use these programs
	Annotation File Processing
	Evaluation of ECG Analyzers
	Signal Processing Applications
	Graphical Applications
	Extensions
	Sources
	Answers to Selected Exercises
	Concept Index
	Function and Macro Index

