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Abstract

The PhysioNet/Computing in Cardiology Challenge
2018 focused on the use of various physiological sig-
nals (EEG, EOG, EMG, ECG, SaO2) collected dur-
ing polysomnographic sleep studies to detect sources of
arousal (non-apnea) during sleep. A total of 1,983
polysomnographic recordings were made available to the
entrants. The arousal labels for 994 of the recordings
were made available in a public training set while 989 la-
bels were retained in a hidden test set. Challengers were
asked to develop an algorithm that could label the pres-
ence of arousals within the hidden test set. The perfor-
mance metric used to assess entrants was the area under
the precision-recall curve. A total of twenty-two indepen-
dent teams entered the Challenge, deploying a variety of
methods from generalized linear models to deep neural
networks.

1. Introduction

The PhysioNet/Computing in Cardiology Challenge is
a competition centered around the creation of open-source
software solutions for complex physiological signal pro-
cessing problems. In 2018, we challenged entrants to de-
velop automated techniques for the detection of non-apnea
sleep arousals. To facilitate the development of their al-
gorithms, we provided a variety of physiological signals,
collected during polysomnographic (PSG) sleep studies.

Sleep is critical to health and well-being. Inadequate or
poor quality sleep is associated with a wide range of neg-
ative outcomes, including: impaired cognitive and motor
function, irritability [1], obesity [2], and depression [3, 4].

“Arousals” are brief intrusions of wakefulness into
sleep, after which sleep resumes [5]. Spontaneous arousals
are a normal feature of the sleeping brain [6]. How-
ever, arousals also occur in response to sleep-disturbances,

and when excessive can cause harm. Arousals are of-
ten the result of obstructive sleep apnea or hypopnea
events. Arousals may also be respiratory effort-related
(RERA) or due to more minor/subtle temporary obstruc-
tions that are not severe enough to meet the criteria for
apneas/hypopneas. Other causes of pathological arousals
include teeth grinding (bruxism), muscle jerks (including
“periodic limb movements of sleep”), pain, insomnia, and
even snoring. Sleep fragmentation – frequent interruption
of sleep by arousals – results in daytime sleepiness, de-
graded cognitive performance, and generally decreases the
ability of sleep to perform its recuperative functions [7–9].

It follows that improving the quality of sleep could be
used to improve a range of societal health outcomes, more
generally. Of course, the treatment of sleep disorders is
necessarily preceded by the diagnosis of sleep disorders.
Traditionally, such diagnoses are developed in sleep lab-
oratory settings, where PSG, audio, and videography of
sleeping subject may be carefully inspected by sleep ex-
perts to identify potential sleep disorders.

2. Challenge Data

2.1. Data Source

A total of 1,983 PSG recordings were provided by the
Massachusetts General Hospital’s (MGH) Sleep Lab in the
Sleep Division together with the Computational Clinical
Neurophysiology Laboratory, and the Clinical Data Ani-
mation Center. The Partners Institutional Review Board
approved retrospective analysis of the MGH dataset with-
out requiring additional consent.

The technicians captured the PSG following the AASM
standards. There were thirteen signals including six chan-
nels of electroencephalography (EEG) at F3-M2, F4-M1,
C3-M2, C4-M1, O1-M2, and O2-M1 based on the Inter-
national 10/20 System; electroculography (EOG) on the



Clinical Feature Total Training Test
Sample size 1,983 994 989
Age 55 (14.4) 55 (14.3) 55 (14.4)
Gender (% male) 65 67 63
BMI 33 (7.6) 33 (7.8) 33 (7.5)
AHI 19 (14.4) 19 (14.6) 18.9 (14.4)
ESS 8.6 (5.3) 8.5 (5.3) 8.7 (5.3)
Recording time (h) 7.7 (0.7) 7.7 (0.7) 7.7 (0.7)
Time in bed (h) 7.5 (0.7) 7.5 (0.7) 7.5 (0.7)
Sleep time (h) 6.2 (1.2) 6.2 (1.1) 6.1 (1.2)
Drug Use (%)

Hypertension 40.9 41.0 40.6
Sleep aids 28.3 29.0 27.8
Antidepressant 26.1 25.7 26.5
Neuroactive 19.1 20.8 17.5
Benzodiazepine 16.1 16.9 15.4
Diabetic 11.7 11.9 11.5
Opiate 7.4 8.1 6.7
Antihistamine 4.8 4.8 4.8
Stimulant 4.7 3.9 5.5
Neuroleptic 4.2 4.5 3.8
Herbal 4.2 4.3 4.0

Reason for visit (%)
Diagnostic 41.8 41.16 42.47
Split night CPAP 38.35 37.95 39.03
All night CPAP 19.85 20.88 18.5

BMI: Body Mass Index; AHI: Apnea-Hypopnea Index;
ESS: Epworth Sleepiness Scale;
CPAP: Continuous Positive Airway Pressure

Table 1. Clinical characteristics of the MGH dataset.

left side (EEG and EOG referenced to the contralateral ear
lobe); electromyography (EMG) was measured at the chin;
two channels of respiration signal from the abdomen and
chest; airflow and oxygen saturation (SaO2); and one ECG
channel recorded below the right clavicle near the sternum
and over the left lateral chest wall. All signals except the
SaO2 were measured with a sampling frequency of 200Hz.
The SaO2 was upsampled using sample and hold to 200Hz
to synchronize samples. All signals were measured in mi-
crovolts.

A total of 1,983 PSG recordings were made available
to the entrants. The arousal labels for 994 of the record-
ings were made available in a public training set while
989 labels were retained in a hidden test set. Since ap-
nea is one of the causes of arousal, the dataset was par-
titioned to ensure a uniform distribution of AHIs in both
sets (Kolmogorov-Smirnov test p-value 0.97). There were
no subjects in common between the training and test sets.
The test set labels were maintained to be private during the
Challenge, and will remain so to enable follow-up works.
Characteristics of the dataset are summarized in Table 1.

Clinical Feature Total Training Test
Time spent in sleep stage (%)

Wake 29.3 28.0 31.0
NREM 1 19.5 19.6 19.0
NREM 2 51.3 51.0 51.7
NREM 3 13.8 14.0 13.8
REM 15.3 15.5 15.2

Number of target arousals
Bruxism – 30 –
Cheyne-Stokes breathing – 3 –
Hypoventilation – 4 –
Noise – 1 –
Partial airway obstruction – 11 –
PLM – 36 –
RERA – 43,822 –
Snoring – 28 –
Spontaneous – 70 –

Number of non-target arousals
Hypopnea – 56,936 –
Central apnea – 22,763 –
Mixed apnea – 2,641 –
Obstructive apnea – 32,547 –

PLM: Periodic leg movement
RERA: Respiratory effort-related arousals

Table 2. Sleep/arousal characteristics of the MGH dataset.

2.2. Expert Labeling

In total, seven scorers annotated the dataset, but with one
scorer per PSG. The EEG signals were scored in nonover-
lapping 30-second epochs according to the AASM stan-
dards as one of five stages: wake (W), rapid eye movement
(REM), non-REM stage 1 (N1), non-REM stage 2 (N2),
and non-REM stage 3 (N3). Subject waveforms were also
annotated for the presence of arousals that interrupted their
sleep. The annotated arousals were classified as either:
spontaneous arousals, respiratory effort related arousals
(RERA), bruxisms, hypoventilations, hypopneas, apneas
(central, obstructive and mixed), vocalizations, snores, pe-
riodic leg movements, Cheyne-Stokes breathing or partial
airway obstructions.

3. Challenge Objective

The goal of the Challenge was to use information from
the available signals to correctly classify target arousal re-
gions. For the purpose of the Challenge, target arousals
were defined as regions where either of the following con-
ditions were met:

• From 2 seconds before a RERA arousal begins, up to 10
seconds after it ends or,



• From 2 seconds before a non-RERA, non-apnea arousal
begins, up to 2 seconds after it ends.

Regions falling within 10 seconds before or after a sub-
ject awoke, had an apnea arousal, or a hypopnea arousal
were not scored.

4. Scoring

Each team was asked to submit a complete, working im-
plementation of their algorithm that could be run in the
Challenge sandbox environment1. For each test subject,
entrants were also required to submit a vector providing
the probability of the target arousal, at the sample level.

During the official phase of the Challenge (April
through August, 2018), each team could submit up to two
entries for scoring. When an entry was submitted, the au-
tomated scoring system calculated a “provisional” score,
based on the entry’s performance on a subset of the test
data, to provide a rough form of feedback to the authors.
At the conclusion of the Challenge, final scores were cal-
culated based on the complete test set. If a team submitted
two entries, they were asked to choose one of the two to be
considered as their final entry.

Each competing team’s final algorithm was graded for
its binary classification performance on target arousal and
non-arousal regions, as measured by the area under the
precision-recall curve (AUPRC). Precision (pj) and recall
(rj) were defined as follows:

pj =
|A ∩ Pj ∩N |
|Pj ∩N |

rj =
|A ∩ Pj ∩N |
|A ∩N |

where N indicates the set of non-scored samples, A indi-
cate the set of target arousal samples, and Pj indicates the
set of samples for which the predicted arousal probability
was at least j

1000 . The area under the curve (and the team’s
final score) was calculated accordingly:

AUPRC =
∑

j , |Pj∩N |6=0

pj (rj − rj+1 )

Note that this is the gross AUPRC (i.e., for each possible
value of j, the precision and recall are calculated for the
entire test database), as opposed to averaging the AUPRC
for each record. More information on the Challenge scor-
ing mechanism and rules can be found at [10].

If the probability vector produced by the entry was not
of the correct length, it was truncated or padded with ze-
roes accordingly. If the entry failed to run for a particular
record, it was treated as if it had produced a vector of all
zeroes.

1https://physionet.org/challenge/sandbox/

Rank Entrant AUPRC
1 Howe-Patterson, Pourbabaee & Benard 0.54
2 Kristjánsson, Þráinsson, Ragnarsdóttir,

Marinósson, Gunnlaugsson, Finnsson, Jónsson,
Helgadóttir, & Ágústsson

0.45

3 He, Wang, Liu, Zhao, Yuan, Li, & Zhang 0.43
4 Varga, Görög, & Hajas 0.42
5 Patane, Ghiasi, Scilingo, & Kwiatkowska 0.40
6 Miller, Ward, & Bambos 0.36
6 Warrick & Homsi 0.36
8 Bhattacharjee, Das, Choudhury, & Banerjee 0.29
8 Szalma, Bánhalmi, & Bilicki 0.29

10 Parvaneh, Rubin, Samadani, Prakash, &
Katuwal

0.21

11 Plešinger, Nejedly, Viscor, Andrla, Halámek, &
Jurák

0.20

12 Zabihi, Rad, Särkkä, Kiranyaz, Katsaggelos, &
Gabbouj

0.19

13 Schellenberger, Shi, Mai, Wiedemann,
Steigleder, Eskofier, Weigel, & Kölpin

0.14

14 Li, Cao, Zhong, & Pan 0.10
15 Jia, Yu, Yan, Zhao, Xu, Hu, Wang, & You 0.10
16 Shen 0.07

Unofficial entries
– Li & Guan † 0.55
– Bilal, Khan, Khan, Qureshi, Saleem, &

Kamboh †
0.15

– Wang, Wang, & Li † 0.07

Table 3. Final scores for the 19 teams in the Challenge.
† denotes unofficial entries.

5. Results

During the official period of the competition, a total of
624 entries were submitted by 34 distinct PhysioNet users.
Of the 624 entries, the majority (82%) were submitted as
dry-runs to test code compatibility with the sandbox en-
vironment. A total of 37 valid entries were submitted for
scoring by 24 distinct users; 19 of these entries (one per
team) qualified for final scoring. The final entries carried
the following open source software licenses: MIT X11 Li-
cense (n = 8), GNU General Public License version 3
(n = 10), and GNU GPL version 2 (n = 1). Table 3 lists
the final scores on the test set. We rounded to two decimal
places for awarding prizes.

6. Conclusions

The excellent performance of the first-place entry
(AUPRC = 0.54), as well as the unofficial top score, in-
dicate that automated arousal detection is realizable. How-
ever, the large variance in performances across entrants
(mean 0.28, and ranging from 0.07 to 0.55) indicates that
arousal detection is a challenging problem. Deep neural-
network approaches have gained significant interest and
traction in recent years, and this year’s Challenge was no
exception. Thirteen of the 22 final entries used neural
networks as a component of their arousal detection algo-
rithms. Among the top ten performers, eight used neu-

https://physionet.org/challenge/sandbox/


ral networking approaches, but neural networks were also
used regularly among the bottom ten entries (n=4). This
variance in performance validates observations from the
greater community of scholars about neural network ap-
proaches: they are powerful when used correctly. The open
source nature of the Challenge should be helpful in this re-
gard, as all models may be downloaded, inspected, and
re-purposed for related, or unrelated problems in the gen-
eral domain of physiological signal processing (e.g., via
transfer learning).

The 2018 Challenge was subject to several limitations.
First, although a time limit of 1.2× 1013 CPU instructions
(about 3.5 hours) was enforced, our scoring approach did
not explicitly penalize or reward algorithms for their com-
putational (in)efficiency. This unfairly equates an entry
that requires two hours of computation, with one that takes
only two minutes for the same AUPRC performance. In re-
ality, computationally inefficient approaches are inferior to
those with similar classification performances that require
less time. Future challenges may overcome this important
limitation by explicitly including computational efficiency
in the scoring function.

Another limitation of the 2018 Challenge was the use
of a performance metric that disregards model calibration.
Models that are well-calibrated may be used descriptively,
while classification-only metrics (i.e., AUPRC) are limited
to prescriptive use. That is, a well-calibrated model may
state the probability of an important arousal event with a
confidence interval. That may be more useful, in prac-
tice, than a binary indicator of the arousal. This important
aspect of model performance is not accounted for by the
AUPRC. Future challenges may benefit from considering
a measure of statistical calibration.

Several of the entries exhibited non-deterministic behav-
ior. That is, they produced similar, albeit not perfectly
identical, classifications of arousal segments when applied
multiple times to the same records. This limitation may
have impaired our ability to perfectly characterize the algo-
rithm’s performance, and prohibits us from making strong
guarantees about future performance on new data.

Having addressed the limitation of the 2018 Challenge,
we believe that the data and algorithms produced and made
publicly available as part of the Challenge represent an im-
portant contribution to the physiological signal processing
community specifically, and greater scientific community
more generally. There are three key features of the Phys-
ioNet Challenge that distinguish it from other data science
competitions (e.g., Kaggle). First is our focus on collect-
ing, and publicly releasing, well-curated novel datasets in
the domain of physiology. Second, and more importantly,
is the open-source spirit (and formal requirement) of the
Challenge. Entrants are not only required to submit code

that runs in an external sandbox ecosystem (ensuring re-
producibility), but must also document their approaches as
part of an academic paper submitted to the annual confer-
ence: Computing in Cardiology. Third, competitors must
attend a public forum and verbally defend their work. To-
gether, these requirements ensure that open-source, well-
documented, reproducible software is developed and dis-
tributed every year as a direct consequence of the Phys-
ioNet Challenge.
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