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Abstract

The PhysioNet/Computing in Cardiology (CinC) Chal-
lenge 2017 focused on differentiating AF from noise, nor-
mal or other rhythms in short term (from 9-61 s) ECG
recordings performed by patients. A total of 12,186 ECGs
were used: 8,528 in the public training set and 3,658 in
the private hidden test set. Due to the high degree of inter-
expert disagreement between a significant fraction of the
expert labels we implemented a mid-competition bootstrap
approach to expert relabeling of the data, levering the best
performing Challenge entrants’ algorithms to identify con-
tentious labels.

A total of 75 independent teams entered the Challenge
using a variety of traditional and novel methods, ranging
from random forests to a deep learning approach applied
to the raw data in the spectral domain. Four teams won the
Challenge with an equal high F1 score (averaged across
all classes) of 0.83, although the top 11 algorithms scored
within 2% of this. A combination of 45 algorithms identi-
fied using LASSO achieved an F1 of 0.87, indicating that
a voting approach can boost performance.

1. Introduction

Atrial fibrillation (AF) is the most common sustained
cardiac arrhythmia, occurring in 1-2% of the general pop-
ulation [1] and is associated with significant mortality and
morbidity through association of risk of death, stroke,
heart failure and coronary artery disease, etc. [2].

Despite the enormity of this problem, AF detection re-
mains problematic, because it may be episodic. AF de-
tectors can be thought of belonging to one of two cat-
egories: atrial activity analysis-based or ventricular re-
sponse analysis-based methods.

Previous studies concerning AF classification are gen-
erally limited in applicability because 1) only classifica-
tion of normal and AF rhythms were performed, 2) good

performance was shown on carefully-selected often clean
data, 3) a separate out of sample test dataset was not used,
or 4) only a small number of patients were used. It is chal-
lenging to reliably detect AF from a single short lead of
ECG, and the broad taxonomy of rhythms makes this par-
ticularly difficult. In particular, many non-AF rhythms ex-
hibit irregular RR intervals that may be similar to AF.

The 2017 PhysioNet/CinC Challenge aims to encour-
age the development of algorithms to classify, from a sin-
gle short ECG lead recording (between 30 s and 60 s in
length), whether the recording shows normal sinus rhythm,
AF, an alternative rhythm, or is too noisy to be classified.
In this Challenge, we treat all non-AF abnormal rhythms
as an alternative rhythm.

2. Challenge data

2.1. Data source

A total of 12,186 ECG recordings were generously do-
nated for this Challenge by AliveCor. Each recording was
taken by an individual who had purchased one of three
generations of AliveCor’s single-channel ECG device, and
in theory, held each of the two electrodes in each hand cre-
ating a lead I (LA-RA) equivalent ECG. Many of the ECGs
were inverted (RA-LA) since the device did not require the
user to rotate it in any particular orientation.

After some basic checks for signal quality, the device
recorded for an average of 30 s. The hardware then trans-
mitted the data to a smartphone or tablet acoustically into
the microphone (over the air, not through a wire) using a
19 kHz carrier frequency and a 200 Hz/mV modulation in-
dex. The data were digitized in real time at 44.1 kHz and
24-bit resolution using software demodulation. Finally the
data were stored as 300 Hz, 16-bit files with a bandwidth
0.5-40 Hz and a ± 5 mV dynamic range.

The data were then converted into WFDB-compliant
Matlab V4 files (each including a .mat file containing the



ECG and a .hea file containing the waveform information)
and split into training and test data sets. The training set
contains 8,528 recordings lasting from 9 s to 61 s and the
test set contains 3,658 recordings of similar lengths (and
class distributions). The test set has not been made avail-
able to the public and will remain private for the purpose
of scoring for the duration of the Challenge and for some
period afterwards to enable follow-up work.

2.2. Expert labeling

Four classes of data were considered: normal rhythm,
AF rhythm, other rhythm and noisy recordings. Three ver-
sion of the data labels were generated for the challenge, in
increasing level of accuracy. Initially, the recording labels
were given with the ECG data by AliveCor, which were
created through an outsourced company and about 10% of
these were over-read. These labels were posted at the be-
ginning of the challenge and acted as the V1 version of
labeling, which was used in the unofficial entry phase run-
ning from Feb 1st to April 9th 2017.

However, some recordings labeled as normal, AF or
other rhythms were actually very noisy and made rhythm
identification by eye virtually impossible. Thus, we visu-
ally re-checked all the recordings and relabeled some data
as the noisy class, resulting in V2 version of labels. This
set of labels was used in the official entry phase which ran
from April 16th to September 1st 2017. A third version
was created for the final test runs as now described.

2.3. Mid-challenge bootstrap relabeling of
the hidden data

Given the large number of training and test examples in
this Challenge, and the limited time and resources avail-
able, the Challenge organizers were not able to recheck
every label by hand before the challenge began, instead we
took the unusual approach of providing a suitable bench-
mark algorithm (below which we knew a contributor was
unlikely to be adding much new information) and used the
competition entrants scoring above this benchmark to help
us identify the data we suspected to be incorrectly labeled.
That is, we ranked the data in terms of the largest level
of disagreement between the top performing algorithms.
The assumption here is that a large enough ensemble of
independent algorithms can be voted together in a suitable
manner to create an improved gold standard, a fact we have
demonstrated on ECG analysis before [3, 4]. The corol-
lary to this is that the harder a task, the more likely your
independent labelers (or algorithms) are to disagree. We
therefore assumed that the labels which most algorithms
classified correctly were both easy to classify and correct,
and focused on the ones on which most top scoring algo-
rithms disagreed. We first identified that the top 10 algo-

Figure 1. Performance of the algorithms on the hidden test
sub-set of 710 recordings. The algorithms were ranked in
descending order of score.

rithms all contributed to an improved score. Each algo-
rithm is ranked in descending order of performance on the
hidden test sub-set of 710 recordings (see figure 1). The
entire dataset (training and test) were then ranked in order
of level of disagreement from most to least. Eight ECG
analysis experts were then asked to independently relabel
the top 1129 most ‘disagreeableness’ with no knowledge
of the prior label. At least three experts were assigned to
each recording, although in some cases it was as high as
eight experts. Table 1 shows the detailed re-labeling results
from the eight experts for these 1,129 test recordings, in-
cluding the annotation frequency for each rhythm type, the
average number of annotators employed per recording, and
the inter-rater agreement level measure, i.e., Fleissḱappa,
κ, which is used for assessing the reliability of agreement
between a fixed number of raters (herein eight raters) when
assigning categorical ratings to a number of classifying
items (herein four types).
κ can be interpreted as expressing the extent to which

the observed amount of agreement among raters exceeds
what would be expected if all raters made their ratings
completely randomly. From Table 1, it is clear that there
are slight agreements among the annotators for each of
the four classes (all κ < 0.2). Over all 1,129 recordings
κ = 0.245, which indicates a fair agreement among the
annotators for all re-labeling task.

After this re-labeling process, all labels were updated
and denoted version 3 (V3). Only test data were updated
with the new labels. Please note a very few training record-
ings were also updated with the new labels and these up-
dates are usually from single expert’s annotation. More
details about the number of recordings in each version of
the labels can be seen in Table 2.

Although a ranking table was posted on-line for the
competition, this was based on only 27.3% of the test data
to guarantee that the 10 entries each team were allowed



Number of Annotation frequency
Class recordings Normal AF Other Noisy Total N κ
Normal 386 1203 136 353 367 2059 5.33 0.173
AF 131 134 283 203 98 718 5.48 0.113
Other 525 1539 236 685 376 2836 5.40 0.197
Noisy 87 81 23 51 306 461 5.30 0.128
Total 1129 2957 678 1292 1147 6074 5.38 0.245

Table 1. Re-labeling results from the eight annotators for 1,129 recordings in test set. N : average number of annotators
per recording.

Type # recordings (%)
V1 V2 V3

Training
Normal 5154 (60.4) 5050 (59.2) 5076 (59.5)
AF 771 (9.0) 738 (8.7) 758 (8.9)
Other 2557 (30.0) 2456 (28.8) 2415 (28.3)
Noisy 46 (0.5) 284 (3.3) 279 (3.3)
Test
Normal 2209 (60.4) 2195 (60.0) 2437 (66.6)
AF 331 (9.1) 315 (8.6) 286 (7.8)
Other 1097 (30.0) 1015 (27.8) 683 (18.7)
Noisy 21 (0.6) 133 (3.6) 252 (6.9)

Table 2. Data profile for the training/test set.

during the official period could not overfit on the test data.
At the end of the Challenge, entrants were asked to identify
their top performing algorithm and the scoring was re-run
on all the V3 test data to produce a final score several days
after the close of the competition. If a competitor did not
indicate the best algorithm of their possible 15 entries, then
the most recently submitted algorithm was used.

3. Scoring

The scoring for this challenge was an F1 measure, which
is an average F1 value from the classification type. The
counting rules for the numbers of the variables are defined
in Table 3. Validation was 300 records (3.5%) of train-
ing set just to ensure the algorithm produced the expected
results. Provisional scoring was based on 1000 records
(27.3%) of test set, and the final (user-selected) algorithm
was scored on all of the test set.

For each of the four types, F1 is defined as:
Normal: F1n = 2×Nn∑

N+
∑

n

AF rhythm: F1a = 2×Aa∑
A+

∑
a

Other rhythm: F1o = 2×Oo∑
O+

∑
o

Noisy: F1p = 2×Pp∑
P+

∑
p

.

Predicted Classification
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∑
N

AF An Aa Ao Ap
∑
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∑
P

Total
∑
n

∑
a

∑
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Table 3. Definition of parameters for scoring used in eq.
1.

The final challenge score is generated as follows:

F1 =
F1n + F1a + F1o

3
(1)

More information on the Challenge scoring mechanism
and rules can be found at http://physionet.org/
challenge/2017.

At the end of the official challenge phase, one entry was
selected by each team as the final challenge entry. This
entry was evaluated on the whole hidden test data.

4. Voting approaches

For the naı̈ve voting method, we firstly ranked the al-
gorithms in descending order of performance on the val-
idation set. Subsequently, we calculated the F1 results
by taking the mode of all algorithm labels. We then ap-
plied a LASSO to all the algorithms to generated penal-
ized maximum-likelihood fitted coefficients for a general-
ized linear model to select a subset of algorithms and a
weighted voting scenario. Finally, we repeated this using
[4], with signal quality as additional features (LASSO+).

5. Results

During the official period of the competition, over 300
entries were submitted in the Challenge by 75 teams (70
of which carry an open source license). Eight of the 70
team’s entries were deemed unofficial because they sub-
mitted too late (and did not participate in the essential un-
official beta test period), or they exceeded the number of
allowable entries in the official period (because their team

http://physionet.org/challenge/2017
http://physionet.org/challenge/2017


Rank Entrant Test Validation Train
=1 Teijeiro et al. 0.831 0.912 0.893
=1 Datta et al. 0.829 0.990 0.970
=1 Zabihi et al. 0.826 0.968 0.951
=1 Hong et al. 0.825 0.990 0.970
=5 Baydoun et al. 0.822 0.859 0.965
=5 Bin et al. 0.821 0.870 0.875
=5 Zihlmann et al. 0.821 0.913 0.889
=5 Xiong et al. 0.818 0.905 0.877
– Voting (top 10) 0.844 – –
– Voting (top 30) 0.847 – –
– Voting (top 50) 0.851 – –
– Voting (all 75) 0.855 – –
– Voting (LASSO) 0.858 – –
– Voting (LASSO+) 0.868 – –

Table 4. Final scores for the top 8 of 75 Challenge teams,
as well as for voting approaches. Bold indicates winning
scores and – indicates not applicable.

members misread the rules and submitted more than 10
entries via multiple email accounts).

Table 4 lists the top scoring entries ranked by F1 on
the test set. Note that we rounded to two decimal places
for awarding prizes, resulting in four equal first and four
equal fifth placed teams. We also reported the F1 results
on both validation and training sets for comparison, giv-
ing a chance to observe if the developed algorithms have
over-trained on the training data.

The results for the naı̈ve voting as a function of the num-
ber of algorithms used (ranked in order of validation F1

scores) are given in the lower half of Table 4. Using the
top 10 algorithms for voting, a F1 value of 0.844 was ob-
tained, which is higher than any of the individual submis-
sion. When using the top 30 and 50 algorithms for vot-
ing, the F1 value increased to 0.847 and 0.851 respectively.
When using all 75 algorithms for voting, the F1 score rose
to 0.855. Finally, using LASSO for feature selection, 45
algorithms were selected from the validation scores, and a
test F1 of 0.858 was achieved. Highest F1 score of 0.868
was achieved by weighted voting of 45 algorithms with
signal quality (LASSO+), which represents the best F1

performance of any of the approaches.

6. Discussions & Conclusions

The large spread of performances indicates that this
is a non-trivial problem. Never-the-less the top scoring
teams provided excellent scores, demonstrating that an au-
tomated screening system is possible. Winning approaches
varied from hand crafted features fed to a random forest,
extreme gradient boosting (XGBoost), to convolutional
(deep) neural networks (CNNs) and recurrent neural net-
works (RNNs). Many entrants, including several of the

winners, used multiple classifiers, or boosting approaches,
including XGBoost, an algorithm that has recently been
dominating applied machine learning and Kaggle compe-
titions for structured or tabular data. However, the fact that
a standard random forest with well chosen features per-
formed as well as more complex approaches, indicates that
perhaps a set of 8,528 training patterns was not enough to
give the more complex approaches an advantage. With so
many parameters and hyperparameters to tune, the search
space can be enormous and significant overtraining was
seen even in the winning entries (see table 4). Most impor-
tantly, the voting of independent algorithms provided a 4%
boost in the F1 measure.

We note two key limitations of the competition: 1. The
choice of the F1 metric may not be the most appropriate
for screening, although, retraining on a different metric is
straight forward. 2. The κ between many data remained
low even after relabeling, indicating that the training data
could be improved. This could be achieved either through
voting or by using the κ itself.
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