import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.util.Arrays; import java.util.Scanner; import java.util.Vector; /** * RNNCinC2010.java * * This class implements a solution for Physionet/CinC Challenge 2010. * * The solution uses a recurrent neural network (RNN) to predict the last 3750 samples * of the zero padded channel of a multichannel signal. * * @author Juliano Jinzenji Duque * @author Luiz Eduardo Virgilio da Silva * * CSIM * Computing on Signals and Images on Medicine Group * University of Sao Paulo * Ribeirao Preto - SP - Brazil */ public class RNNCinC2010 { // Parameters private static int iterations; private static double learningRate; private static int numNeuronsHiddenLayer; private static String file; public static void main(String[] args) { readParameters(); double[][] signal = readSignal(file); int nsig = signal.length; int sigSize = signal[0].length; int startGap = 71250; // Removing fully flat channels boolean[] discardedSignal = new boolean[nsig]; for(int i=0; i