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Abstract

We present generalizations of our previously published

artificial models for generating multi-channel ECG so that

the simulation of abnormal rhythms is possible. Using a

three-dimensional vectorcardiogram (VCG) formulation,

we generate the normal cardiac dipole for a patient using

a sum of Gaussian kernels, fitted to real VCG recordings.

Abnormal beats are then specified either as new dipoles,

or as perturbations of the existing dipole. Switching be-

tween normal and abnormal beat types is achieved using

a hidden Markov model (HMM). Probability transitions

can be learned from real data or modeled by coupling to

heart rate and sympathovagal balance. Natural morphol-

ogy changes form beat-to-beat are incorporated as before

from varying the angular frequency of the dipole as a func-

tion of the inter-beat (RR) interval. The RR interval time

series is generated using our previously described model

whereby time-and frequency-domain heart rate (HR) and

heart rate variability (HRV) characteristics can be speci-

fied. QT-HR hysteresis is simulated by coupling the Gaus-

sian kernels associated with the T-wave in the model with a

nonlinear factor related to the local HR (determined from

the last n RR intervals). Morphology changes due to res-

piration are simulated by coupling the RR interval to the

angular frequency of the dipole. We demonstrate an exam-

ple of the use of this model by simulating T-Wave Alternans

(TWA). The magnitude of the TWA effect is modeled as a

disturbance on the T-loop of the dipole with a magnitude

that differs in each of the three VCG planes. The effect

is then turned on or off using a HMM. The values of the

transition matrix are determined by the local heart rate,

such that when the HR ramps up towards 100 BPM, the

probability of observing a TWA effect rapidly but smoothly

increases. In this way, no ‘sudden’ switching from non-

TWA to TWA is observed, and the natural tendency for

TWA to be associated with a critical HR-related activa-

tion level is simulated. Finally, to generate multi-lead sig-

nals, the VCG is mapped to any set of clinical leads using

a Dower-like transform derived from a least-squares opti-

mization between known VCGs and known lead morpholo-

gies. ECGs with calibrated amounts of TWA were gen-

erated by this model and included in the PhysioNet/CinC

Challenge 2008 data set.

1. Introduction

This article presents an extension of our previously de-

scribed multi-lead ECG model [1], [2], [3] [4] to simulate

the morphological dynamics of abnormal rhythms. The

motivation for this model was to provide a set of standard

signals for the ninth annual PhysioNet/Computers in Car-

diology Challenge (PCinCC) [5], which aims to improve

understanding of methods for identification and analysis

of ECG T-wave alternans (TWA).

2. Methods

2.1. Dynamic VCG model

Following [1], [2], [3] and [4], the dynamic model for

the d(t) dipole vector is given by:
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where ∆θx
i = (θ−θx

i )mod(2π), ∆θy
i = (θ−θy

i )mod(2π),
∆θz

i = (θ−θz
i )mod(2π), and ω = 2πf , where 60/f is the

instantaneous (beat-to-beat) heart rate and γ = 1/
√

fav

is a dimensionless Bazett-like correction where fav is the

mean of the last n beats, typically with n = 6.

The first equation in Eq. (1) generates a circular trajec-

tory rotating with the frequency of the heart rate. Each of

the three coordinates of the dipole vector d(t), is modeled

by a summation of Gaussian functions with the amplitudes

of αx
i , αy

i , and αz
i ; widths of bx

i , by
i , and bz

i ; and located at

the rotational angles of θx
i , θy

i , and θz
i .

The VCG is then generated by V CG(t) = H ·
R · Λ · s(t) + W (t) where V CG(t)N×1 is a vector of

the ECG channels recorded from N leads, s(t)3×1 =
[x(t), y(t), z(t)]T contains the three components of the

dipole vector d(t), HN×3 corresponds to the body volume

conductor model (as for the Dower transformation matrix

[6]), Λ3×3 = diag(λx, λy, λz) is a diagonal matrix corre-

sponding to the scaling of the dipole in each of the x, y,

and z directions, R3×3 is the rotation matrix for the dipole

vector, and W (t)N×1 is the noise in each of the N ECG

channels at the time instance of t. Note that H , R, and Λ
matrices are generally functions of time.

2.2. Generating the RR time series

The RR interval time series (which forms the input for ω
in Eq. (1)) is generated as per [1], to last 300 seconds, with

a baseline heart rate of 110 BPM, a standard deviation of

5 BPM, and an LF/HF-ratio of 2 (see [1]). To simulate a

sudden, but realistic change in heart rate, we apply a tanh

ramp function to the time series, with a magnitude equal to

hr = hb +(χ− 1

2
)ho, where hb = 23 BPM, ho = 6 and χ

is a random number uniformly distributed between 0 and 1.

The ramp is then given by hr = hr(tanh(t)+1)/2+ Mχ
30

,

where M = |hr(tanh(t) + 1)/2|
max

. A randomly-seeded

HR time series, h, is then generated according to [1], to

which the ramp hr is added.

2.3. VCG generation; normal and abnor-

mal beats

The VCG is generated by Eq. 1 and with a sampling fre-

quency of 500 Hz. Abnormal beats (every second beat in

the TWA time series) can be generated by adding an offset

of ν µV to the 11th Gaussian amplitude (α11). However,

for the data in the PCinCC the αi were modified to ναi

for i = 9, 10 and 11. ν is generally a 3-dimensional quan-

tity corresponding to each of the three VCG planes (Vx,

Vy and Vz). To mimic the observation by Martı́nez et al.

[7] that there is a preferred plane of TWA activity, we ar-

bitrarily forced the scaling to be different in each plane

(νx = νz/2 = νz/3). Thirteen different levels of TWA

activity were then generated (1µV ≤ ν ≤ 40µV ).

2.4. HMM state transition matrix for TWA

HR dependence

The transition from one beat type to another is de-

termined by a state transition matrix (STM), STM =
[p1 p2 ; p3 p4], (1 ≥ p1, p2, p3, p4, ≥ 0). For this

application we chose a symmetric formulation, STM =
[ 1 − p p ; p 1 − p ], so that the probability of transition

of normal to abnormal best is the same as the probability

of transition from abnormal to normal. For stationary con-

tinuous TWA, p = 1 and for sinus rhythm, p = 0. More

generally, the STM has the same rank as the number of

beat types.

To simulate the dependence on HR of the TWA effect,

we modified p so that p = tanh((h−hTWA+r)/5) where

h is the instantaneous heart rate, hTWA = 95 BPM is the

HR at which the TWA effect manifests, with a random ±5
BPM offset at the point at which TWA begins to manifest

(r = 10χ − 5). Figure 1 illustrates an example of instan-

taneous heart rate and resultant probability of transition to

TWA derived form such a procedure. Note that as the in-

stantaneous heart rate rises above 110 BPM, the transition

probability saturates to unity (corresponding to continuous

stationary TWA).

Figure 1. Example of instantaneous heart rate and resul-

tant probability of transition to TWA.

2.5. Generation of full 12-lead ECG

To generate five different artificial ‘patients’, we used

the model parameters in [4] and derived a set of five in-

dividual Dower transforms (IDTs) [6] using the the first

five patients in the Physikalisch-Technische Bundesanstalt

Diagnostic ECG Database (PTBDB) [8, 9]. The PTBDB,

consists of 549 records from 290 subjects with 15 simul-

taneously measured signals: the conventional 12 leads (I,
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Figure 2. Example of 12 lead ECG after application of IDT.

II, III, AVR, AVL, AVF, V1, V2, V3, V4, V5, V6) together

with the 3 Frank lead ECGs (Vx, Vy, Vz). The individual

(3 by 12) Dower-like matrix is derived by a nonlinear least

square optimization fit [10] between the VCG and the 12

leads, using the first 10 seconds of each patient. Although

such a method ignores the changes in the IDT from beat

to beat due to respiration, morphological changes due to

respiration are already accounted for in the model, using a

Bazett-like correction [1] to the Gaussian parameters. Ap-

plication of each IDT to the VCG, together with random-

ized seeds for the RR interval generation provides 12 lead

ECG for the five different patients.

3. Results

In order to evaluate our simulator we used visual inspec-

tion to empirically verify the TWA amplitudes with no QT

variation. In tests we generated TWA amplitudes of 2, 3,

4, 5, 6, 7, 8, 10, 11, 12, 20, 30 and 40 µV for each of the

five artificial patients.

The generated 12 lead ECG for one of the realizations of

this model is illustrated in figure 2 and the corresponding

VCG from which this 12 lead example is derived (using a

patient-specific IDT) is illustrated in figure 3.

Figure 4 illustrates the ‘ABAB’ phenomenon of the re-

sulting TWA effect with an amplitude of 23 µV .

4. Discussion and conclusions

The dynamic model presented in this article if fully gen-

eralizable, using an optimization procedure to fit the VCG

to any given subject or observation to an arbitrary level of

accuracy. Each beat class can be fitted to real examples

separately, and the probability transition matrix that deter-

mines how likely it is for one beat type to follow another

can be derived from empirical studies of known databases.

The STM is coupled to heart rate, but can also be coupled

to autonomic tone, sleep state or any other relevant input

parameter. Therefore, abnormal beats such as ectopy can

be simulated by using new beat classes (fitted in the same

manner as the derivation of the IDT), and adding an appro-

priate shortening of the associated RR interval. Each new

beat class increases the rank of the STM by one. An ap-

propriate transition probability between this new beat and
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Figure 3. Example of VCG generated by model.

Figure 4. Typical alternating ‘ABAB’ TWA pattern (with

23 µV amplitude) generated from our model.

other beat classes can be derived by training the HMM on

real databases.

Since our model employs a dipole representation, with

an individual Dower-like transform to map the dipole onto

clinical observational axes (such as the standard 12 lead

ECG), correlated noise can be added in multiple dimen-

sions, and hence can manifest in a realistic manner on all

observational ECG leads. Multiple noise sources can be

treated as other dipole moments in the model, and the rela-

tive motions of sources and sensors can be simulated using

a Givens rotation matrix to multiply the IDT [4]. Finally,

clinical features of the simulated signal can be extracted

directly from the model [11].

An open source TWA detection algorithm developed for

PCinCC, which was evaluated on this model, is described

in an accompanying paper [12].
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