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Abstract 

In this paper, a semi-automated multiscale 
algorithm based on rescaled continuous wavelet 
transform is presented in order to determine QT 
interval. According to our previous works, the relation 
between the duration of ECG waves and their wavelet 
transforms and dominant scales are used to determine 
QRS complex vicinity and to denoise ECG signal 
based on detected vicinity of QRS complex. Then, a 
simple mathematical sinusoid model for T-wave is 
considered to determine T-wave domain which is 
based on variance deviation of T-model and ECG 
between two successive QRS complexes. A simple 
analysis of signal’s energy leads to rescaled Maximum 
Energy Density (MED) curve which is used to 
determine onset and offset of QT-interval. We 
evaluated the algorithm on the PTB database. The 
proposed approach is achieved about 53.7 ms of RMS 
error. The preliminary results are sent to 
PhysioNet/Computers in Cardiology Challenge 2006. 

1. Introduction 

The electrocardiogram (ECG) is an important non-
invasive tool for assessing the condition of the heart. 
By examining the ECG signal in detail it is possible to 
derive a number of informative measurements from the 
characteristic ECG waveform. Perhaps the most 
important of these measurements is the "QT interval", 
which plays a crucial role in clinical drug trials. In 
particular, drug-induced prolongation of the QT 
interval (so called Long QT Syndrome) can result in a 
very fast, abnormal heart rhythm known as torsade de 
pointes [1], which is often followed by sudden cardiac 
death. Since, changes in the QT interval are currently 
the gold standard for evaluating the effects of drugs on 
ventricular repolarization, since the wide variety of 
changes observed in the morphology of T-wave and its 
low frequency components, QT interval measurement 
algorithms have been an intensive research field in the 
recent years.  

In practice, such measurements are carried out 
manually by specially trained ECG analysts. This is an 
expensive and time consuming process, which is 
susceptible to mistakes by the analysts and provides no 
associated degree of confidence in the measurements. 
For this reason, much effort has been put into 

developing automated methods that can accurately 
and effectively measure the QT interval in ECG 
waveforms [2]. 

Currently however, no automated system can 
achieve the same level of accuracy as an expert ECG 
analyst. In particular, unusual waveform 
morphologies (such as those caused by entopic beats) 
coupled with the various noise processes which affect 
the ECG (such as muscle artifact and baseline 
wander), often result in unreliable QT interval 
measurements by automated techniques. 

The vast majority of algorithms for automated QT 
analysis are based on threshold methods which 
attempt to predict the end of the T wave as the point 
where the T wave crosses a predetermined threshold 
[3]. More recently, Graja and Boucher have 
investigated the use of hidden Markov tree models for 
segmenting ECG signals encoded with the discrete 
wavelet transform [4]. Furthermore, some methods 
based on wavelet transform (DWT) are developed for 
QT interval measurement [5-6]. 

In this paper we propose a new approach to semi-
automated QT interval analysis, applied continuous 
wavelet transform (CWT) analysis employing the 
Haar wavelet in the exercise ECG signal which 
produces both a segmentation of the ECG and an 
associated degree of confidence in the QT interval 
detection. Such confidence in measurements can be 
used to assess the novelty of the method under 
consideration, and thus to determine a suitable 
threshold for rejecting QT interval measurements 
which are deemed to be unreliable. 

2. Mathematical concepts 

2.1 Dominant Scale 
In order to analyze ECG signals we introduced 

rescaled wavelet coefficients, ),( baTn  (Equation 1), 
inspiring from wavelet ridge which is used to 
determine the instantaneous frequencies of signal 
components in case of Morlet T-wavelet [7]. 
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In order to analyze ECG signals using CWT, we 
used the simple mathematical model proposed at [8] 
as shown in Figure 1. In this model, a normal ECG 



beat is approximated by the summation of two sinus 
functions correspond to P and T-waves and three 
triangles as QRS complex. Regarding to the linearity 
of Haar wavelet transform, the rescaled wavelet map of 
the proposed model has been evaluated by 
transforming each component separately. 

Consequently, the duration of each component of an 
ECG signal is expressed as a function of time interval 
and the corresponding dominant rescaled wavelet 
coefficients. 

 
Figure 1. A mathematical model of ECG signal 

The following relation between dominant scale and 
sample time for QRS complex are derived as: 
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Where, QRSD  is the QRS complex duration and sT  
is rescaled wavelet coefficient. 
2.2 ECG Denoising 

It’s possible to eliminate undesired high frequency 
components, noises, in ECG signal using windowed 
analysis. By knowing the QRS complexes domain, a 
window is considered. The scale of this window is 
defined as a function of QRS dominant scale (Equation 
3). 
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Where, iP  is the sample index of thi detected R 
wave, x is the sample index and QRSa  is the QRS 

Dominant Scale. For sample index of thi  detected R 
wave, x change as: 
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The formula defines window’s scale in the vicinity 
of thi  QRS that varies from 1 to QRSa×3.1 . The mean 
value through the window is set to the signal’s value at 
the center of the window. By this approach, the lowest 
length, results the original signal. High frequency 
components including noises and QRS complexes are 
significantly observed in low scales. In contrast, low 
frequency components including T and P waves are 
observed in high scales. Therefore, around QRS 

complexes, denoised signal is mostly like original 
signal, and outside the QRS complexes high 
frequencies are eliminated or weakened. It results a 
denoised smooth signal and morphologies similar to 
its original ECG signal. Baseline wandering is also 
removed by considering local average over two 
seconds of ECG signal. An empirical ECG Denoising 
plus baseline-wandering is shown in Figure 2. 

 
Figure 2. Empirical Denoised ECG signal and baseline-
wandering removing (MIT-BIH database; patient 104) 

3. Domain Detection Methods 

3.1 Threshold based technique of QRS 
Complex detection 

In order to detect QRS complexes, the Haar 
continuous wavelet transform of ECG signal is used. 
QRS complex is more significant at its dominant 
scale, therefore it is sufficient just to analyze the CWT 
of ECG signal at its QRS dominant scale [9]. 

The Method is based on threshold Method [10] at 
which two concepts of local search interval [11] and 
dominant rescaled wavelet coefficients [8] are used.  

The threshold is locally determined for about two 
seconds of heart-beat according to Equation 5. 
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Where R is the local root mean square (rms) and M 
is the amplitude of local extremum of rescaled CWT 
and α  denotes search back coefficient. The search is 
initiated at 5.1=α . At each search back stage, a 
lower value for α  is considered [10]. 

3.2 Minimum variance deviation 
technique of T-wave detection 

T-wave is a low frequency wave with rather long 
duration and mainly, it has two different morphologies 
(Figure 3). T-wave vicinity can be determined by 
searching through denoised signal for long duration 
waves between each pair of detected QRS. In order to 
determine T-wave domain, first we consider a simple 
mathematical sinusoid model for T-wave (Figure 1). 
Then, the variance of ECG signal and modeled T-

QRS interval 

P 
T 

Q 
S 

R 

ST Segment 

DP DT 

Denoised signal 

Original signal 



wave between two successive detected QRS complexes 
is calculated. The region, at which this variance 
becomes minimum, denotes T-wave vicinity [10]. 

 

(a) 

 

(b) 

Figure 3. Two main morphologies of T-wave 

4. Onset & offset estimation technique 
of QT interval 

4.1 Distribution of Energy over time-
Frequency space 

The contribution to the signal energy at the specific 
a scale and b location is given by the two-dimensional 
wavelet energy density function known as the 
scalogram (analogous to the spectrogram—the energy 
density surface of the Short Time Fourier Transform 
(STFT)) [7]: 

2),(),( baTbaE =  (6) 

Where ),( baT  is CWT at scale a and location b. 
But we are more concern about rescaled CWT and 
develop it to the energy density surface called rescaled 
energy density which is defined by Equation 7.  

2),(),( baTbaE nn =  (7) 

In each location, b, the value of wavelet becomes 
maximum in a specific scale or frequency. This scale 
denotes the dominant scale of the signal in that 
location, which can be calculated as Equation 8: 
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The diagram of the Maximum Energy Density 
(MED) in the a-b plane can be obtained via plotting 

domina  with respect to b. In other words, the answer of 
this question that in what scale the energy density in a 
specific location reaches to its maximum value is the 

key point in the mentioned concept. We call the 
consequent curve ‘the rescaled MED curve’. For 
instance, the rescaled MED diagram of modeled ECG 
signal is shown in Figure 4: 

 

Figure 4. One beat of ECG signal and its MED curve 

It should be noted that above definition slightly 
differs from wavelet ridges which determine regions 
with a high concentration of energy, not the highest 
one that the MED curve describes so. This approach 
inspired from this fact that ECG signal is composed of 
several instantaneous single-frequencies. As shown in 
Figure, special waves are obviously distinguishable as 
sinusoid waves. Therefore, MED curve can be the 
best candidate to analyze ECG waves such as P and T 
waves or QRS complex. 

4.2 Onset and Offset estimation 
Consider a sinusoid T-wave. There are clinical 

resting levels before and after T-wave in ECG signal, 
which is called ST segment and TP interval 
respectively and theoretically, they have zero 
frequencies. Therefore, the MED curve for T-wave 
obtained as Figure 5, which da  denotes the dominant 
scale of the sinusoid T-wave.  

  
(a) (b) 

Figure 5. MED curve of two main morphologies of T-wave 

Now, we use mathematical approach to determine 
offset of T-wave. Wherever, the wavelet window 
reaches to the end of T-wave, MED curve starts to 
rising up –at point A or location Ab  in MED curve 
(Figure 5). Thus, by adding half of da  , to Ab , the 
offset of T-wave can be determined. 
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This special point in the rescaled MED curve after 
which MED value rises is called ‘rising point’. The 
MED curve before and after rising points (A & B as 
shown above) is not smooth and is dental instead. This 
is because of discretized scales practically. Rising 
points, e.g. point A & B, correspond to the cross point 
of two consecutive rescaled CWT, ),( baT d  and 

),( baT d γ+ , where γ  is the scale difference.  
If we model ECG waves, e.g. T wave as single 

frequency waves, the relative location, relb  of rising 
point can be obtained by solving Equation 10. 
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Where, α  is the coefficient relates scale to 
frequency (Equation 11). 
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By searching in the T-wave vicinity, first we detect 
rising point in MED curve. Then T-wave offset can be 
determined by knowing the absolute location of rising 
point in practical signal, absb  (Equation 12). 
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The same procedure can be carried out to determine 
QRS complex onset (Equation 12). It should be noted 
that QRS complex dominant scale evaluated by 
Equation 2 is equal to the one read from MED curve. 
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5. Results and Conclusion 

In this paper, the task of QT interval estimation 
based on CWT and energy analysis is carried out. 

Based on proposed mathematical relations, using 
the concepts of local search interval and dominant 
rescaled wavelet coefficients, QRS complexes are 
evaluated with the sensitivity about 99% and using 
concept of minimum variance deviation of modeled T-
wave and denoised ECG signal difference, T-wave 
domain evaluated with the sensitivity about 97%. 

We evaluated the algorithm on the PTB database. 
The proposed multiscale approach is achieved about 
53.7 ms of RMS error. The preliminary results are sent 
to PhysioNet/Computers in Cardiology Challenge 
2006. The algorithm is semi-automated because at the 
first step the dominant scale is calculated by human. 
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