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Abstract

A method is presented to determine the QT interval by

fitting a nonlinear artificial ECG model to segmented re-

gions of a human ECG. The model consists of a set of

temporally Gaussian functions with different widths and

heights. These parameters are fitted to a given ECG (seg-

mented around the QRS complex to include the P and T

wave) using a nonlinear least squares optimization rou-

tine. The Q onset and T offset can be determined pre-

cisely (in a statistical sense) from the parameters of the

Gaussian. Since the fitted waveform contains no noise, the

differential is smooth. Waveform boundaries can also be

determined by searching for the minimum of a differen-

tial. Furthermore, the residual error provides an estimate

of the confidence in the fit, and hence, the derived QT in-

terval. Using the human expert-annotated PhysioNet QT

database, various QT interval estimation schemes were

compared using the model-fitted ECG to find an optimal

marker of the QT interval. It was found that humans are

inconsistent and almost always under-estimate the T-offset

(if defined to be the end of any repolarization). This is

probably due to the truncation of any human estimation

when the T wave tail is consumed by noise. We there-

fore propose an alternative QT end point. Finally, an entry

based on the most favourable technique was submitted in

the PhysioNet / Computers in Cardiology Challenge 2006;

QT Interval Measurement, which is intended to produce

a comparison of several automatic and human annotators

on the Physikalisch-Technische Bundesanstalt diagnostic

ECG database. A follow-up paper to address differences

between those generated by our method and the consensus

of the other entries will be submitted shortly.

1. Introduction

The Expert Working Group (Efficacy) of the Interna-

tional Conference on Harmonization of Technical Require-

ments for Registration of Pharmaceuticals for Human Use

(ICH) has developed and has given its final (‘step 4’) en-

dorsement in May, 2005 to a set of guidelines (ICH E14)

for clinical evaluation of QT/QTc interval prolongation

and pro-arrhythmic potential for non-antiarrhythmic drugs

[1]. A major part of the motivation for the seventh an-

nual PhysioNet/Computers in Cardiology Challenge [2] is

to provide well-characterized data that might support mod-

ifications of the ICH E14 recommendations with respect to

fully-automated methods. The Challenge is attempts to an-

swer the important clinical question: Can the QT interval

be measured by fully automated methods with an accuracy

acceptable for clinical evaluations?

For this Challenge each contestant is required to submit

an entry for a Q onset and accompanying T offset for one

‘representative’ beat in lead II of each of the 549 record-

ings in the Physikalisch-Technische Bundesanstalt Diag-

nostic ECG Database (PTBDB). There are essentially two

categories; manual and automated. The score for each en-

try is calculated from the mean square difference between

these intervals and the median of the manual (human) in-

tervals, weighted by the number of records attempted. Fur-

ther details can be found on PhysioNet [2] and in [3].

2. A model-based approach

Our approach is based upon the concept of fitting a real-

istic model to the ECG and extracting parameters from the

model to determine waveform onsets and offsets.

2.1. Preprocessing

Before fitting a model to the ECG, it is necessary to per-

form a series of noise reduction and first-order segmen-

tation steps, from which an adaptive procedure is used to

fine-tune the segmentation, and allow precise feature local-

ization. The preprocessing steps are:

• Mains noise filtering: The PTBDB exhibits significant

mains noise interference at 50 and 100 Hz. Therefore, two

FIR notch filters centered at fnotch = 50 Hz and fnotch =
100 Hz were implemented using a forward-backward zero-

phase filtering procedure.

• QRS detection: A standard QRS detector was used

[4] that locates a maximum in a smoothed, differentiated,

squared and integrated ECG. A quality metric was also de-

fined to reject QRS complexes that are too long or short.

• Baseline wander removal: Non-cardiac related low fre-

quency baseline changes are generally removed by con-
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structing a cubic spline interpolated signal using each

beat’s isoelectric point as a node for the spline proce-

dure. Here we propose a new and robust method for iso-

electric point location. Each beat is segmented in a win-

dow between R(ti) − α(R(ti) − R(ti−1) and R(ti+1) −
α(R(ti+1) − R(ti) with α = 0.4. The data is then 5 point

median filtered, quantized into fs/20 levels and then the

mode of the sequence is calculated. The latest value the

segment with the value of this mode is taken to be the

isoelectric point. A cubic spline is then constructed us-

ing these points at a rate of fcubic = 5 Hz. The data is

then antialias-resampled from fcubic Hz to fs Hz. For the

PTBDB fs = 1000 Hz. The resultant signal is then re-

moved from the recorded ECG.

• Template construction and artefact rejection: To con-

struct a general template of a lead-specific beat, the first

40 beats in the given lead (II) are segmented as described

above. The initial template, s, is simply the mean of this set

of beats. Abnormal and noisy beats are removed from the

template if the correlation coefficient, ρ, between a given

beat and z is less than 0.9. The new template is then the

average of the remaining beats with ρ ≥ 0.9. This proce-

dure was first described in [5]. If more than 10 beats are

removed, another 20 beats are added and this procedure is

repeated until at least 30 beats are in the template.

2.2. Dynamic Gaussian model for wave-

form parameterization

The general model fitting procedure is described in [6]

and [7]. Briefly, each of the symmetric turning points (Q,

R, and S) in the ECG are characterised by one Gaussian

and the asymmetric turning points (P and Q) are charac-

terised by two Gaussians (to account for bi-phasic P waves

and the asymmetric nature of the T wave at low to medium

heart rates). Therefore, 21 parameters (7 Gaussians) can

be used to accurately describe the ECG. From [6];

z =
∑

i∈{P1,P2,Q,R,S,T1,T2}

(ai/2bi) e

∆t
2

i

2b2

i + zit (1)

where P1 and P2 are the two Gaussians describing

asymmetric/bi-phasic P wave, and T1 and T2 are the two

Gaussians used to describe the asymmetric T wave. Func-

tions other than Gaussians can be used, such as the Gumble

or log-Normal functions, to reduce the number of parame-

ters from 21, but flexibility and interpretation can be lost.

2.3. Fitting the model to features

To fit the model to an observation, a nonlinear gradient

descent is performed to optimize the parameters, ai, bi and

ti to produce a sum of Gaussians that best fit the signal.

The signal model (Eq. 1) is fitted to an observation s(t), by

minimizing the squared error εr, between s and the model

output, z such that εr = minai,bi,θi
‖s(t)− z(t)‖2

2. This is

achieved using a nonlinear gradient descent [6].

2.3.1. Model intialisation

The gradient descent can be accelerated by estimating

the model parameters. The only parameters of the initial

guess that require accurate estimation are the ti. These

can be simply estimated from the initial template, firstly

through a simple peak and trough detection algorithm,

limited by heart-rate adjusted refactory periods, and then

through an initial fit to the average template. For a lead II

configuration, tQ and tS are taken to be the minima in a

100 ms window either side of the R peak. tP is then taken

to be time at which s is maximal in the section before tQ.

tT is taken to be time at which s is maximal in the section

following tS . For the asymmetric waves (P and T), their

ti’s are taken to be ±40 ms either side of the tP and tT .

The ai and bi are initialized with an arbitrary small value

of 10+5ϑ, where ϑ is a uniform distribution on the interval

[0,...,1].

2.4. QT interval determination from model

parameters

We considered two methods for determining wave

boundaries. The first method is an intuitive interpretation

of the end of repolarization, where we look for the gradient

of the ECG to drop to zero. The second is a probabilistic

interpretation of the end point, given as a fixed number

of standard deviations from the central peak of a sum of

Gaussians.

2.4.1. Absolute zero-gradient criteria

In practice, the digital ECG has a finite sampling fre-

quency and resolution, so we must look for a point where

the absolute gradient drops below some small constant, ǫ,

that depends on the sampling frequency and resolution.

The search region is limited to the peak of the final Gaus-

sian (second portion of the T wave) and the first Gaussian

(first portion of the P wave) of the next beat. That is, where

|dz

dt
| < ǫ, tT2

i < t < tP1

i+1. (2)

For a resolution of 16 bits and fs = 1 kHz, ǫ = 10−3.

2.4.2. Probabilistic criteria

The second method we considered depends on locating

the onset and offset using a statistical technique. Specifi-

cally, since the constituent waves within the ECG are rep-

resented by Gaussians, we can calculate the onsets and off-
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sets as a set number of standard deviations, σ, away from

the mean µ, the central location of the Gaussian. One prob-

lem however, is that each wave (and in particular the T

wave) must be represented by more than one Gaussian.

For two Gaussians X1 with probability p1 and X2 has

probability p2, with p1 + p2 = 1, can be considered to be

linear combinations such that X = p1X1 + p2X2. The

mean is then µ = p1µ1 + p2µ2. For the T wave, µ1 = tT1
,

µ2 = tT2
, σ1 = bT1

and σ2 = bT2
. The variance is

given by p2
1σ

2
1 + p2

2σ
2
2 and so the standard deviation is

σ = (A2
1b

2
1 +B2

2b2
2)

1

2 , where A1 and B1 are normalisation

constants given by A1 = p1

p1+p2
and A2 = p2

p1+p2
). The

relative probabilities of the Gaussians, p1 and p2, that form

the T wave are simply the areas under each Gaussian and

can be derived from an analytical integration of two expo-

nentials to give p1 = aT1
bT1

√
2π and p2 = aT2

bT2

√
2π

Therefore the end point of the T wave is defined as

Toffset = µT + ℵσT (3)

µT = (aT1
bT1

√
2π)tT1

+ (aT2
bT2

√
2π)tT2

σT = (A2
1σ

2
T1

+ A2
2σ

2
T2

)
1

2 .

The start of the Q wave is defined for one Gaussian in
a simple way; Qonset = µQ − ℵσQ. We chose ℵ = 2
as a convenient, although non-optimal definition for the

onset/offset of the Q and T waves.

2.5. Beat selection

The competition rules suggest that the first ‘representa-

tive’ beat in lead II should be selected for analysis. How-

ever, the problems with selecting such a beat are numerous:

• Rapid nonstationary changes; beats following abnormal

beats will have non-representative QT intervals.

• Slow nonstationary changes; beats later in the recording

may have significantly different QT intervals.

• Noise on beats; rejecting beats with the template cross

correlation ρ < 0.9 removes unrepresentative beats.

• Inter-lead differences; QT dispersion across leads means

that each lead will provide a different length QT interval.

These criteria preclude using the first beat in each file. To

obtain the first non-noisy beat we select the second beat

with ρ ≥ 0.9 with the 30-beat template. This precludes

any beat that follows and abnormal beat, and any noisy or

abnormally shortened/elongated beat. Of our three entries,

our final entry also used information from all the standard

12 leads, as described below. (The VCG leads were not

used, since they usually give longer QT intervals than the

standard 12 leads.)

2.5.1. Robust multi-lead comparisons & qual-

ity metrics

QT dispersion (QTd) is defined as the difference be-

tween the longest QT and the shortest QT interval mea-

sured on a standard 12 lead configuration [8]. Although

great controversy exists surrounding the phenomenon of

QTd [9], it is clear that it inter-lead differences do ex-

ist. The reason for QT interval differences between leads

is thought to be due to the differing spatial orientation of

the ECG lead vectors and their differing sensitivity, which

modifies T wave amplitudes differently on each lead [9]. It

is sometimes considered to be both an observational error

in measurement, and a real effect due to inhomogeneities

in the line of conduction between the heart and the elec-

trodes.

A realistic QT interval should be assessed as either the

longest (for LQTS) or the shortest (for SQTS) calculated

from all 12 standard leads. However, this approach in au-

tomated ECG analysis is sensitive to noise. In particular,

choosing just one lead (such as lead II) is unlikely to give

accurate QT interval measurements for all morphologies.

Therefore, by taking the median QT interval from all 12

leads, we provide a more accurate (and more human-like)

analysis of the QT interval.

Furthermore, the longest QT interval is determined by

taking the median of the QT intervals longer than the over-

all median. The shortest QT interval is similarly deter-

mined by taking the median of all the QT intervals shorter

than the overall median QT interval. This double-median

QT interval determination method leads to a more robust

automated QTd measurement.

The quality of the fit is defined to be one minus the nor-

malised residual error in the model-fit per sample. How-

ever, since the QT intervals for this data are currently un-

known, calibration of this quality index on this data set

was not possible. Therefore, all 549 records in the PTBDB

were annotated regardless of quality.

3. Competition entries

Three different sets of QT onset/offset pairs were en-

tered into the competition:

1. Where |dz/dt| ≈ 0.

2. At the 2σ point on the T wave of a lead II beat.

3. Median of all 12 clinical leads determined by (2).

A deliberate choice was made to enter these three meth-

ods in this order, since we expected that each method

would approximate the human decision process. ℵ = 2
standard deviations was chosen to define the end of the T

wave since this has a statistically justifiable interpretation.

No effort was made to incrementally optimize this param-

eter, ℵ, in order to achieve closer results to the median of

the manual scores, since we felt this detracted from the

philosophical point of our approach. That is, we wished

to determine how far a series of well-founded, mathemat-

ically justifiable, locations are from the consensus human

standard.
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4. Results and discussion

Our first entry, based upon the zero-gradient criterion,

resulted in a score of 163.39 ms with a positive bias of

95.32. This poor score reflected the fact that humans trun-

cate the estimate of T wave offset at an early point due to

the difficulty in locating the end of the exponential decay

in the noise floor. Therefore, the zero-gradient criterion,

although philosophically the most justifiable, poorly mim-

ics human annotation.

Our second entry, based upon the 2σ point of the com-

bined T wave Gaussian representation of a single represen-

tative beat in lead II, resulted in a much improved score of

38.51 ms (31.45 after correcting for the +23.87 bias). The

residual error in the model fit indicated that many of the

beats used to identify the end of the T wave were of low

quality and therefore we entered the median of the model

fit across all 12 clinical leads.

This resulted in a third and final score of 28.23 ms, or

30.79 ms with a bias of +12.28 ms. It is interesting to com-

pare this to what is considered a significant error in the QT

interval. Although there is no clear consensus, a figure of

about 10 to 30 ms could be considered a reasonable error,

since Ivaylo et al. [10] found that in many cases, experts

often disagreed by this amount. It should be noted that the

Challenge score uses a root mean square error metric and is

therefore highly sensitive to errors in just one or two of the

549 subjects. It is therefore difficult to infer significance

in the errors of these results. The significant positive bias

suggests that the ℵσ criterion could be adjusted to ℵ < 2 in

order to improve our score. Since ℵ is a nonlinear, patient-

specific parameter that leads to a QT interval that depends

on the morphology of the T wave, the adjustment to mimic

human annotation intervals may best be done by altering

the estimate of the T offset as a function of T wave height

and asymmetry, as well as width. However, further blind

adjustment of this threshold in an incremental fashion for

the competition is simply an attempt to over-tune on the

data set to win the competition and does not aid the real

development of the algorithm.

Rather, we wish to systematically explore which facets

of the algorithm require further improvement. Moreover,

the actual bias in the QT interval is not important, as long

as one can adjust for the bias, or the biased measure is as

consistent (or more consistent) than other ad-hoc methods

for delineating the Q onset and T offset.

5. Conclusions and further work

In this work we have shown that a model-based ap-

proach can lead to a robust and accurate method for deter-

mining the QT interval in a large range of patients. Our ap-

proach is useful on one or multiple leads, and can be tuned

to incorporate individual biases in human preferences of

T wave end points (by adjusting the number of standard

deviations that defines the T wave end).

We have also demonstrated that humans appear to con-

sistently under-estimate reasonable (statistical) definitions

of the ‘true’ T wave end-point. Future work will focus on

exploring the true T wave end point using realistic conduc-

tion models and improving the stability of estimates for the

repolarization period and the stability of QT proxies.

Of course, the final word in the selection of a QT interval

estimation process will be its clinical utility.
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